53 research outputs found

    Microbial associations with macrobiota in coastal ecosystems : patterns and implications for nitrogen cycling

    Get PDF
    Author Posting. © Ecological Society of America, 2016. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 14 (2016): 200-208, doi:10.1002/fee.1262.In addition to their important effects on nitrogen (N) cycling via excretion and assimilation (by macrofauna and macroflora, respectively), many macrobiota also host or facilitate microbial taxa responsible for N transformations. Interest in this topic is expanding, especially as it applies to coastal marine systems where N is a limiting nutrient. Our understanding of the diversity of microbes associated with coastal marine macrofauna (invertebrate and vertebrate animals) and macrophytes (seaweeds and marine plants) is improving, and recent studies indicate that the collection of microbes living in direct association with macrobiota (the microbiome) may directly contribute to N cycling. Here, we review the roles that macrobiota play in coastal N cycling, review current knowledge of macrobial–microbial associations in terms of N processing, and suggest implications for coastal ecosystem function as animals are harvested and as foundational habitat is lost or degraded. Given the biodiversity of microbial associates of macrobiota, we advocate for more research into the functional consequences of these associations for the coastal N cycle.University of Chicago-Marine Biological Laboratories (MBL

    Marine bacterial, archaeal and protistan association networks reveal ecological linkages

    Get PDF
    Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physico-chemical observations. Samples and observations were collected monthly over 3 years at a well-described ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible ‘keystone’ species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes

    Database of nitrification and nitrifiers in the global ocean

    Get PDF
    As a key biogeochemical pathway in the marine nitrogen cycle, nitrification (ammonia oxidation and nitrite oxidation) converts the most reduced form of nitrogen – ammonium–ammonia (NH4+–NH3) – into the oxidized species nitrite (NO2-) and nitrate (NO3-). In the ocean, these processes are mainly performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB). By transforming nitrogen speciation and providing substrates for nitrogen removal, nitrification affects microbial community structure; marine productivity (including chemoautotrophic carbon fixation); and the production of a powerful greenhouse gas, nitrous oxide (N2O). Nitrification is hypothesized to be regulated by temperature, oxygen, light, substrate concentration, substrate flux, pH and other environmental factors. Although the number of field observations from various oceanic regions has increased considerably over the last few decades, a global synthesis is lacking, and understanding how environmental factors control nitrification remains elusive. Therefore, we have compiled a database of nitrification rates and nitrifier abundance in the global ocean from published literature and unpublished datasets. This database includes 2393 and 1006 measurements of ammonia oxidation and nitrite oxidation rates and 2242 and 631 quantifications of ammonia oxidizers and nitrite oxidizers, respectively. This community effort confirms and enhances our understanding of the spatial distribution of nitrification and nitrifiers and their corresponding drivers such as the important role of substrate concentration in controlling nitrification rates and nitrifier abundance. Some conundrums are also revealed, including the inconsistent observations of light limitation and high rates of nitrite oxidation reported from anoxic waters. This database can be used to constrain the distribution of marine nitrification, to evaluate and improve biogeochemical models of nitrification, and to quantify the impact of nitrification on ecosystem functions like marine productivity and N2O production. This database additionally sets a baseline for comparison with future observations and guides future exploration (e.g., measurements in the poorly sampled regions such as the Indian Ocean and method comparison and/or standardization). The database is publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.8355912 (Tang et al., 2023).</p

    A community resource for paired genomic and metabolomic data mining

    Get PDF
    Genomics and metabolomics are widely used to explore specialized metabolite diversity. The Paired Omics Data Platform is a community initiative to systematically document links between metabolome and (meta)genome data, aiding identification of natural product biosynthetic origins and metabolite structures.Peer reviewe

    Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone

    No full text
    Microbial communities play central roles in ocean biogeochemical cycles, and are particularly important in in oceanic oxygen minimum zones (OMZs). However, the key carbon, nitrogen, and sulfur (S) cycling processes catalyzed by OMZ microbial communities are poorly constrained spatially, temporally, and with regard to the different microbial groups involved. Here we sample across dissolved oxygen gradients in the oceans’ largest OMZ by volume—the eastern tropical North Pacific ocean, or ETNP—and quantify 16S rRNA and functional gene transcripts to detect and constrain the activity of different S-cycling groups. Based on gene expression profiles, putative dissimilatory sulfite reductase (dsrA) genes are actively expressed within the ETNP OMZ. dsrA expression was limited almost entirely to samples with elevated nitrite concentrations, consistent with previous observations in the eastern tropical South Pacific (ETSP) OMZ. dsrA and ‘reverse’ dissimilatory sulfite reductase (rdsrA) genes are related and the associated enzymes are known to operate in either direction, reducing or oxidizing different S compounds. We found that rdsrA genes and soxB genes were expressed in the same samples, suggestive of active S cycling in the ETNP OMZ. These data provide potential thresholds for S cycling in OMZs that closely mimic recent predictions, and indicate that S cycling may be broadly relevant in OMZs

    High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    No full text
    Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA) and bacteria (AOB) in 9 high-altitude lakes (2289-3160 m) in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA) genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate) were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2) = 0.32, p<0.1), whereas AOA abundance was inversely correlated with lake elevation (r(2) = 0.43, p<0.05). We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes

    Diversity of Ammonia-Oxidizing Archaea and Bacteria in the Sediments of a Hypernutrified Subtropical Estuary: Bahía del Tóbari, Mexico

    No full text
    Nitrification within estuarine sediments plays an important role in the nitrogen cycle, both at the global scale and in individual estuaries. Although bacteria were once thought to be solely responsible for catalyzing the first and rate-limiting step of this process, several recent studies have suggested that mesophilic Crenarchaeota are capable of performing ammonia oxidation. Here we examine the diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) within sediments of Bahía del Tóbari, a hypernutrified estuary receiving substantial amounts of ammonium in agricultural runoff. Using PCR primers designed to specifically target the archaeal ammonia monooxygenase α-subunit (amoA) gene, we found AOA to be present at five sampling sites within this estuary and at two sampling time points (January and October 2004). In contrast, the bacterial amoA gene was PCR amplifiable from only 40% of samples. Bacterial amoA libraries were dominated by a few widely distributed Nitrosomonas-like sequence types, whereas AOA diversity showed significant variation in both richness and community composition. AOA communities nevertheless exhibited consistent spatial structuring, with two distinct end member assemblages recovered from the interior and the mouths of the estuary and a mixed assemblage from an intermediate site. These findings represent the first detailed examination of archaeal amoA diversity in estuarine sediments and demonstrate that diverse communities of Crenarchaeota capable of ammonia oxidation are present within estuaries, where they may be actively involved in nitrification

    Bi-plot of redundancy analysis of bacterial community composition.

    No full text
    <p>Color key denotes different lakes, and arrows denote biplot scores for the constraining variables. The grey box encompasses 17 samples that fall within a narrow range of each other and are not visually distinguishable on the bi-plot; this includes 1–2 samples from every lake except Middle Sunrise and Upper Cathedral Lake. One sample from Middle Sunrise Lake with extremely high AOB <i>amoA</i> gene abundance is not shown, as it falls much farther along the RDA1 and RDA2 axes.</p
    corecore