259 research outputs found

    Computer simulation of field ion images of nanoporous structure in the irradiated materials

    Full text link
    Computer simulation and interpretation of field ion microscopy images of ion irradiated platinum are discussed. Field ion microscopy technique provides direct precise atomic scale investigation of crystal lattice defects of atomically pure surface of material; at the same time it allows to analyze the structural defects in volume by controlled and sequential removal of surface atoms by electric field. Defects identification includes the following steps: at the first stage the type of crystalline structure and spatial orientation of crystallographic directions were determined. Thus, we obtain the data about exact position of all atoms of the given volume, i.e. the model image of an ideal crystal. At the second stage, the ion image was processed used the program to obtain the data about real arrangement of atoms of the investigated sample. At the third stage the program compares these two data sets, with a split-hair accuracy revealing a site of all defects in a material. Results of the quantitative analysis show that shape of nanopores are spherical or cylindrical, diameter on nanopores was varied from 1 to 5 run, their depth was fond to be from 1 to 9 nm. It was observed that nearly 40% of nanopores are concentrated in the subsurface layer 10 nm thick, the concentration of nanopores decreased linearly with the distance from the irradiated surface

    Customer relationship management in nonrofit sector

    Get PDF
    The article discusses the possibility of using customer relationship management system (CRM) by non-profit organizations. The successful cases of the implementation of CRM systems in the activities of non-profit organizations are given

    Numerical And Experimental Study Of Multi-Point Forming Of Thick Double-Curvature Plates From Aluminum Alloy 7075

    Get PDF
    The paper describes various rod type work tools intended for forming parts and their design peculiarities and technological processes they are used in. We present the device for multi-point forming thick double-curvature plates with the use of reconfigurable core punch and die in large temperature and speed range. The results of finite element modeling of forming and machining process are demonstrated. It is revealed that heating the work piece results in pressing of the rod into the work piece in the areas of maximum pressure. The depth of pressing depends on mechanical behavior of the material at forming temperature and force to forming rods. The paper presents the results of experiments on developing of multi-point forming plates

    Dynamics of spatial coherence and momentum distribution of polaritons in a semiconductor microcavity under conditions of Bose-Einstein condensation

    Get PDF
    The study was supported by the Russian Foundation for Basic Research (project nos. 12-02-33091, 13-02-12197, and 14-02-01073) and the Presidium of the Russian Academy of Sciences. The work of V.V.B. was supported in part by a scholarship of the President of the Russian Federation.The dynamics of spatial coherence and momentum distribution of polaritons in the regime of Bose-Einstein condensation in a GaAs microcavity with embedded quantum wells under nonresonant excitation with picosecond laser pulses are investigated. It is shown that the establishment of the condensate coherence is accompanied by narrowing of the polariton momentum distribution. At the same time, at sufficiently high excitation densities, there is significant qualitative discrepancy between the dynamic behavior of the width of the polariton momentum distribution determined from direct measurements and that calculated from the spatial distribution of coherence. This discrepancy is observed at the fast initial stage of the polariton system kinetics and, apparently, results from the strong spatial nonuniformity of the phase of the condensate wavefunction, which equilibrates on a much longer time scale.Publisher PDFPeer reviewe

    Plykin-like attractor in non-autonomous coupled oscillators

    Full text link
    A system of two coupled non-autonomous oscillators is considered. Dynamics of complex amplitudes is governed by differential equations with periodic piecewise continuous dependence of the coefficients on time. The Poincar\'{e} map is derived explicitly. With exclusion of the overall phase, on which the evolution of other variables does not depend, the Poincar\'{e} map is reduced to 3D mapping. It possesses an attractor of Plykin type located on an invariant sphere. Computer verification of the cone criterion confirms the hyperbolic nature of the attractor in the 3D map. Some results of numerical studies of the dynamics for the coupled oscillators are presented, including the attractor portraits, Lyapunov exponents, and the power spectral density.Comment: 11 pages, 9 figure

    Retinal damage in amyotrophic lateral sclerosis: underlying mechanisms

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting in a gradual loss of motor neuron function. Although ophthalmic complaints are not presently considered a classic symptom of ALS, retinal changes such as thinning, axonal degeneration and inclusion bodies have been found in many patient
    corecore