55 research outputs found

    Late Replication Domains in Polytene and Non-Polytene Cells of Drosophila melanogaster

    Get PDF
    In D. melanogaster polytene chromosomes, intercalary heterochromatin (IH) appears as large dense bands scattered in euchromatin and comprises clusters of repressed genes. IH displays distinctly low gene density, indicative of their particular regulation. Genes embedded in IH replicate late in the S phase and become underreplicated. We asked whether localization and organization of these late-replicating domains is conserved in a distinct cell type. Using published comprehensive genome-wide chromatin annotation datasets (modENCODE and others), we compared IH organization in salivary gland cells and in a Kc cell line. We first established the borders of 60 IH regions on a molecular map, these regions containing underreplicated material and encompassing ∼12% of Drosophila genome. We showed that in Kc cells repressed chromatin constituted 97% of the sequences that corresponded to IH bands. This chromatin is depleted for ORC-2 binding and largely replicates late. Differences in replication timing between the cell types analyzed are local and affect only sub-regions but never whole IH bands. As a rule such differentially replicating sub-regions display open chromatin organization, which apparently results from cell-type specific gene expression of underlying genes. We conclude that repressed chromatin organization of IH is generally conserved in polytene and non-polytene cells. Yet, IH domains do not function as transcription- and replication-regulatory units, because differences in transcription and replication between cell types are not domain-wide, rather they are restricted to small “islands” embedded in these domains. IH regions can thus be defined as a special class of domains with low gene density, which have narrow temporal expression patterns, and so displaying relatively conserved organization

    Genomic Organization of H2Av Containing Nucleosomes in Drosophila Heterochromatin

    Get PDF
    H2Av is a versatile histone variant that plays both positive and negative roles in transcription, DNA repair, and chromatin structure in Drosophila. H2Av, and its broader homolog H2A.Z, tend to be enriched toward 5′ ends of genes, and exist in both euchromatin and heterochromatin. Its organization around euchromatin genes and other features have been described in many eukaryotic model organisms. However, less is known about H2Av nucleosome organization in heterochromatin. Here we report the properties and organization of individual H2Av nucleosomes around genes and transposable elements located in Drosophila heterochromatic regions. We compare the similarity and differences with that found in euchromatic regions. Our analyses suggest that nucleosomes are intrinsically positioned on inverted repeats of DNA transposable elements such as those related to the “1360” element, but are not intrinsically positioned on retrotransposon-related elements

    Expression of the Pupal Determinant broad during Metamorphic and Neotenic Development of the Strepsipteran Xenos vesparum Rossi

    Get PDF
    Derived members of the endoparasitic order Strepsiptera have acquired an extreme form of sexual dimorphism whereby males undergo metamorphosis and exist as free-living adults while females remain larviform, reaching sexual maturity within their hosts. Expression of the transcription factor, broad (br) has been shown to be required for pupal development in insects in which both sexes progress through metamorphosis. A surge of br expression appears in the last larval instar, as the epidermis begins pupal development. Here we ask if br is also up-regulated in the last larval instar of male Xenos vesparum Rossi (Stylopidae), and whether such expression is lost in neotenic larviform females. We clone three isoforms of br from X. vesparum (Xv′br), and show that they share greatest similarity to the Z1, Z3 and Z4 isoforms of other insect species. By monitoring Xv′br expression throughout development, we detect elevated levels of total br expression and the Xv′Z1, Xv′Z3, and Xv′Z4 isoforms in the last larval instar of males, but not females. By focusing on Xv′br expression in individual samples, we show that the levels of Xv′BTB and Xv′Z3 in the last larval instar of males are bimodal, with some males expressing 3X greater levels of Xv′br than fourth instar femlaes. Taken together, these data suggest that neoteny (and endoparasitism) in females of Strepsiptera Stylopidia could be linked to the suppression of pupal determination. Our work identifies a difference in metamorphic gene expression that is associated with neoteny, and thus provides insights into the relationship between metamorphic and neotenic development. © 2014 Erezyilmaz et al

    Observations On the Induction of Position Effect Variegation of Euchromatic Genes in Drosophila-Melanogaster

    No full text
    In the T(1;2)dor(var7) translocation, the IA-2B7-8 segment of the X chromosome is brought to the vicinity of 2R-chromosome heterochromatin resulting in position effect variegation of dor, BR-C and more distal genes, as well as compaction of chromatin in this segment. By irradiation of T(1;2)dor(var7), nine reversions (rev) to a normal phenotype were recovered. In two cases (rev27, rev226), the 1A-2B7-8 section is relocated to the 19A region of the X chromosome, forming free duplications (1A-2B7--8/19A-20F-X-het). Modifiers of position effect do not change the normal expression of the BR-C and dor genes in these duplications. In five reversions (rev3, rev40, rev60, rev167, rev175), free duplications have formed from the 1A-2B7-8 fragment and X chromosome heterochromatin. In these rearrangements, modifiers of position effect (low temperature, removal of Y and 2R-chromosome heterochromatin and a genetic enhancer (E-var(3)201) induce position-effect again. Two reversions (rev45 and rev110) are associated with additional inversions in the original dor(var7) chromosomes. The inversions relocate part of the heterochromatin adjacent to the IA-2B7-8 section into new positions. In T(1;2)dor(rev45), position-effect is seen in the 2B7-8-7A element as compaction spreading from 2B7-8 proximally in some cases as far as the 5D region. Thus, in rev45 the pattern of euchromatin compaction is reciprocal to that of the initial dor(var7) strain. Apparently, it is due to the same variegation-evoking center near the 2R centromere in both cases. In all nine revertants, weakening or complete disappearance of the position-effect is observed despite retention of the 20- kb heterochromatic segment adjacent to the IA-2B7-8 region. Thus, a 20-kb heterochromatic sequence does not inactivate euchromatin joined to it

    The transposon A(R)4-24P[white, rosy] in Drosophila melanogaster is subject to position-effect variegation at a non-centromeric insertion site

    No full text
    The white gene within the transposon A(R)4-24P [white, rosy] inserted at cytological location 24D1-2 in the euchromatic portion of the Drosophila melanogaster genome exhibits a mosaic pattern of expression which is modified by temperature and Y-chromosome number, as in cases of classical position-effect variegation (PEV). The eye colour of the flies in this variegated stock remains mosaic in the presence of the PEV modifier Su(var)3-6, slightly less so with Su(var)3-9 and Su(var)2-5, and full suppression of variegation occurs in the presence of Su(var)3-7. We have induced further transposition of A(R)4-24 and isolated two mosaic stocks with this transgene at new cytological locations. In these stocks, the A(R)4-24 transposon was flanked by the same genomic DNA fragments as in the original location. Spontaneous loss of these fragments leads to reversion of the variegated eye colour to wild-type. We suggest that the flanking DNA fragments from 24D1-2 are capable of inducing position-effect variegation without any association with centromeric heterochromatin. In situ hybridisation and Southern analysis demonstrate that the 5' flanking genomic fragment contains repeated sequences which are abundantly present in heterochromatin

    Molecular and genetic map comparison of the 2B6-2B7-8 region of the Drosophila melanogaster X chromosome

    No full text
    Molecular and genetic data were compared for the 2B6-2B7-8 region of the Drosophila melanogaster X chromosome. This region contains the dor (deep orange) and swi (single wing) genes influencing ecdysterone-dependent gene expression. Genes which had not been identified previously by genetic methods were shown to be present in this region. Two novel loci, designated a6 and b6, were characterized in detail. Both genes are expressed throughout Drosophila embryogenesis. The product of b6 has a homology with mammalian pentraxins. This is the first Drosophila gene found to contain the pentraxin motif
    corecore