12,335 research outputs found
Hexadecapole Interaction and the Delta I=4 Staggering Effect in Rotational Bands
A role of the multipole interaction in the description of the =4
staggering phenomenon is investigated in a model consisting of a single-
shell filled by identical nucleons. Exact diagonalization of the
quadrupole-plus-hexadecapole Hamiltonian shows that the
hexadecapole-hexadecapole interaction can produce a =4 periodicity
in the yrast sequence.Comment: revised version with technical changes only, to be published in
Physica Scripta, latex, 4 pages, 3 PostScript figures available on request
from [email protected], preprint No. IFT/18/9
Magnetic Moments of Heavy Baryons in Light Cone QCD Sum Rules
The magnetic moments of heavy baryons containing a single charm or
bottom quark are calculated in the framework of light cone QCD sum rules
method. A comparison of our results with the predictions of the quark models is
presented.Comment: 26 Pages, 8 Figures and 1 Tabl
Statistical Analysis of Precipitation Events
In the present paper we demonstrate the results of a statistical analysis of
some characteristics of precipitation events and propose a kind of a
theoretical explanation of the proposed models in terms of mixed Poisson and
mixed exponential distributions based on the information-theoretical entropy
reasoning. The proposed models can be also treated as the result of following
the popular Bayesian approach.Comment: 5 pages, 4 figures; ICNAAM 201
g_phi-pion-gamma coupling constant in light cone QCD sum rules
The coupling constant of g_phi-pion-gamma decay is calculated using light
cone QCD sum rules. A comparison of our result with the ones existing in the
literature is presented.Comment: 9 pages, 2 figure
Pseudoscalar--meson decuplet--baryon coupling constants in light cone QCD
Taking into account the breaking effects, the strong coupling
constants of the , and mesons with decuplet baryons are
calculated within light cone QCD sum rules method. It is shown that all
coupling constants, even in the case of breaking, are described in
terms of only one universal function. It is shown that for transition violation of symmetry is very large
and for other channels when symmetry is violated, its maximum value
constitutes .Comment: 17 Pages, one Figure and 3 Table
Potential energy and dipole moment surfaces of H3- molecule
A new potential energy surface for the electronic ground state of the
simplest triatomic anion H3- is determined for a large number of geometries.
Its accuracy is improved at short and large distances compared to previous
studies. The permanent dipole moment surface of the state is also computed for
the first time. Nine vibrational levels of H3- and fourteen levels of D3- are
obtained, bound by at most ~70 cm^{-1} and ~ 126 cm^{-1} respectively. These
results should guide the spectroscopic search of the H3- ion in cold gases
(below 100K) of molecular hydrogen in the presence of H3- ions
Supersymmetric Higgs pair discovery prospects at hadron colliders
We study the potential of hadron colliders in the search for the pair
production of neutral Higgs bosons in the framework of the Minimal
Supersymmetric Standard Model. Using analytical expressions for the relevant
amplitudes, we perform a detailed signal and background analysis, working out
efficient kinematical cuts for the extraction of the signal. The important role
of squark loop contributions to the signal is emphasised. If the signal is
sufficiently enhanced by these contributions, it could even be observable at
the next run of the upgraded Tevatron collider in the near future. At the LHC
the pair production of light and heavy Higgs bosons might be detectable
simultaneously.Comment: 5 pages, hep99, 6 figures; Presented at the International Europhysics
Conference on High Energy Physics, Tampere, Finland, 15-21 July 199
Analysis of heavy spin--3/2 baryon--heavy spin--1/2 baryon--light vector meson vertices in QCD
The heavy spin--3/2 baryon--heavy spin--1/2 baryon vertices with light vector
mesons are studied within the light cone QCD sum rules method. These vertices
are parametrized in terms of three coupling constants. These couplings are
calculated for all possible transitions. It is shown that correlation functions
for these transitions are described by only one invariant function for every
Lorenz structure. The obtained relations between the correlation functions of
the different transitions are structure independent while explicit expressions
of invariant functions depend on the Lorenz structure.Comment: 17 Pages, 6 Figures and 4 Table
On inelastic hydrogen atom collisions in stellar atmospheres
The influence of inelastic hydrogen atom collisions on non-LTE spectral line
formation has been, and remains to be, a significant source of uncertainty for
stellar abundance analyses, due to the difficulty in obtaining accurate data
for low-energy atomic collisions either experimentally or theoretically. For
lack of a better alternative, the classical "Drawin formula" is often used.
Over recent decades, our understanding of these collisions has improved
markedly, predominantly through a number of detailed quantum mechanical
calculations. In this paper, the Drawin formula is compared with the quantum
mechanical calculations both in terms of the underlying physics and the
resulting rate coefficients. It is shown that the Drawin formula does not
contain the essential physics behind direct excitation by H atom collisions,
the important physical mechanism being quantum mechanical in character.
Quantitatively, the Drawin formula compares poorly with the results of the
available quantum mechanical calculations, usually significantly overestimating
the collision rates by amounts that vary markedly between transitions.Comment: 9 pages, 6 figures, accepted for A&
- …