2,721 research outputs found

    Clinical signs, imaging findings, and outcome in twelve cats with internal ophthalmoparesis/ophthalmoplegia

    Get PDF
    Objective To retrospectively evaluate the clinical signs, imaging ?ndings, and outcomeof feline internal opht halmoparesis/ophthalmoplegia.Procedure Medical records were reviewed from 2008 to 2015. Inclusion criteriaincluded cats that presented with internal ophthalmoparesis/o phthalmoplegia, under-went diagnostic imaging, and had follow-up information available.Results Twelvecases of felineinternal ophthalmoparesis/ophthalmoplegia wereidenti?ed.Nine cats were unilaterally affected, and three cats were bilaterally affected. Affectedcats had a median age of 10.54 years (range 5.75 to 13.17), and both sexes of var yingbreeds were affected (nine males; three females). Clinical signs including abnormalmental status (n = 9; 75%) and additional neurologic abnor malities ( n = 10; 83%)were observed. Magnetic resonance imaging and/or compute d tomography (MRI/CT)of the head were performed in ten cats, revealing a mass lesion in all cases with vary-ing locations. Multicentric lymphoma was diagnosed in two cats via abdominal ultra-sound and cytology. All twelve cats were euthanized due to deterioration of clinicalsigns and/or quality-of-life concern s. Median time from diagnosis to euthana sia was3.5 days (range 0 to 80 days).Conclusions Feline internal ophthalmoparesis/ophthalmoplegia rarely presents as thesole clinical sign in a referral hospital. Advanced imaging (MRI/CT) may be necessaryto reach a de?nitive diagnosis in these cases. However, abdominal ultr asound wouldbe advocated in cats with systemic clinical signs as a less expensive and less invasivediagnostic test to further investigate the possible etiology of internal ophthalmopare-sis/ophthalmoplegia prior to advanced imaging. Feline cases with internal ophthalmo-paresis/ophthalmoplegia associated with other intracranial signs and/or systemicclinical signs have a poor prognosis

    Experimental philosophy leading to a small scale digital data base of the conterminous United States for designing experiments with remotely sensed data

    Get PDF
    Research using satellite remotely sensed data, even within any single scientific discipline, often lacked a unifying principle or strategy with which to plan or integrate studies conducted over an area so large that exhaustive examination is infeasible, e.g., the U.S.A. However, such a series of studies would seem to be at the heart of what makes satellite remote sensing unique, that is the ability to select for study from among remotely sensed data sets distributed widely over the U.S., over time, where the resources do not exist to examine all of them. Using this philosophical underpinning and the concept of a unifying principle, an operational procedure for developing a sampling strategy and formal testable hypotheses was constructed. The procedure is applicable across disciplines, when the investigator restates the research question in symbolic form, i.e., quantifies it. The procedure is set within the statistical framework of general linear models. The dependent variable is any arbitrary function of remotely sensed data and the independent variables are values or levels of factors which represent regional climatic conditions and/or properties of the Earth's surface. These factors are operationally defined as maps from the U.S. National Atlas (U.S.G.S., 1970). Eighty-five maps from the National Atlas, representing climatic and surface attributes, were automated by point counting at an effective resolution of one observation every 17.6 km (11 miles) yielding 22,505 observations per map. The maps were registered to one another in a two step procedure producing a coarse, then fine scale registration. After registration, the maps were iteratively checked for errors using manual and automated procedures. The error free maps were annotated with identification and legend information and then stored as card images, one map to a file. A sampling design will be accomplished through a regionalization analysis of the National Atlas data base (presently being conducted). From this analysis a map of homogeneous regions of the U.S.A. will be created and samples (LANDSAT scenes) assigned by region

    Phase preserving amplification near the quantum limit with a Josephson Ring Modulator

    Full text link
    Recent progress in solid state quantum information processing has stimulated the search for ultra-low-noise amplifiers and frequency converters in the microwave frequency range, which could attain the ultimate limit imposed by quantum mechanics. In this article, we report the first realization of an intrinsically phase-preserving, non-degenerate superconducting parametric amplifier, a so far missing component. It is based on the Josephson ring modulator, which consists of four junctions in a Wheatstone bridge configuration. The device symmetry greatly enhances the purity of the amplification process and simplifies both its operation and analysis. The measured characteristics of the amplifier in terms of gain and bandwidth are in good agreement with analytical predictions. Using a newly developed noise source, we also show that our device operates within a factor of three of the quantum limit. This development opens new applications in the area of quantum analog signal processing

    When Is a Bulge Not a Bulge? Inner Disks Masquerading as Bulges in NGC 2787 and NGC 3945

    Full text link
    We present a detailed morphological, photometric, and kinematic analysis of two barred S0 galaxies with large, luminous inner disks inside their bars. We show that these structures, in addition to being geometrically disk-like, have exponential profiles (scale lengths \sim 300--500 pc) distinct from the central, non-exponential bulges. We also find them to be kinematically disk-like. The inner disk in NGC 2787 has a luminosity roughly twice that of the bulge; but in NGC 3945, the inner disk is almost ten times more luminous than the bulge, which itself is extremely small (half-light radius \approx 100 pc, in a galaxy with an outer ring of radius \approx 14 kpc) and only \sim 5% of the total luminosity -- a bulge/total ratio much more typical of an Sc galaxy. We estimate that at least 20% of (barred) S0 galaxies may have similar structures, which means that their bulge/disk ratios may be significantly overestimated. These inner disks dominate the central light of their galaxies; they are at least an order of magnitude larger than typical ``nuclear disks'' found in ellipticals and early-type spirals. Consequently, they must affect the dynamics of the bars in which they reside.Comment: LaTeX, 37 pages, 14 EPS figures. To appear in The Astrophysical Journal (November 10, 2003 issue). Version with full-resolution figures available at http://www.iac.es/galeria/erwin/research

    Cosmologies with a time dependent vacuum

    Full text link
    The idea that the cosmological term, Lambda, should be a time dependent quantity in cosmology is a most natural one. It is difficult to conceive an expanding universe with a strictly constant vacuum energy density, namely one that has remained immutable since the origin of time. A smoothly evolving vacuum energy density that inherits its time-dependence from cosmological functions, such as the Hubble rate or the scale factor, is not only a qualitatively more plausible and intuitive idea, but is also suggested by fundamental physics, in particular by quantum field theory (QFT) in curved space-time. To implement this notion, is not strictly necessary to resort to ad hoc scalar fields, as usually done in the literature (e.g. in quintessence formulations and the like). A "running" Lambda term can be expected on very similar grounds as one expects (and observes) the running of couplings and masses with a physical energy scale in QFT. Furthermore, the experimental evidence that the equation of state of the dark energy could be evolving with time/redshift (including the possibility that it might currently behave phantom-like) suggests that a time-variable Lambda term (possibly accompanied by a variable Newton's gravitational coupling G=G(t)) could account in a natural way for all these features. Remarkably enough, a class of these models (the "new cosmon") could even be the clue for solving the old cosmological constant problem, including the coincidence problem.Comment: LaTeX, 15 pages, 4 figure

    Experimental violation of a Bell's inequality in time with weak measurement

    Full text link
    The violation of J. Bell's inequality with two entangled and spatially separated quantum two- level systems (TLS) is often considered as the most prominent demonstration that nature does not obey ?local realism?. Under different but related assumptions of "macrorealism", plausible for macroscopic systems, Leggett and Garg derived a similar inequality for a single degree of freedom undergoing coherent oscillations and being measured at successive times. Such a "Bell's inequality in time", which should be violated by a quantum TLS, is tested here. In this work, the TLS is a superconducting quantum circuit whose Rabi oscillations are continuously driven while it is continuously and weakly measured. The time correlations present at the detector output agree with quantum-mechanical predictions and violate the inequality by 5 standard deviations.Comment: 26 pages including 10 figures, preprint forma

    Community standards for open cell migration data

    Get PDF
    Cell migration research has become a high-content field. However, the quantitative information encapsulated in these complex and high-dimensional datasets is not fully exploited owing to the diversity of experimental protocols and non-standardized output formats. In addition, typically the datasets are not open for reuse. Making the data open and Findable, Accessible, Interoperable, and Reusable (FAIR) will enable meta-analysis, data integration, and data mining. Standardized data formats and controlled vocabularies are essential for building a suitable infrastructure for that purpose but are not available in the cell migration domain. We here present standardization efforts by the Cell Migration Standardisation Organisation (CMSO), an open community-driven organization to facilitate the development of standards for cell migration data. This work will foster the development of improved algorithms and tools and enable secondary analysis of public datasets, ultimately unlocking new knowledge of the complex biological process of cell migration
    corecore