70 research outputs found

    New Trends in the Use of Volatile Compounds in Food Packaging

    Get PDF
    In the last years, many of the research studies in the packaging industry have been focused on food active packaging in order to develop new materials capable of retaining the active agent in the polymeric matrix and controlling its release into food, which is not easy in many cases due to the high volatility of the chemical compounds, as well as their ease of diffusion within polymeric matrices. This review presents a complete revision of the studies that have been carried out on the incorporation of volatile compounds to food packaging applications. We provide an overview of the type of volatile compounds used in active food packaging and the most recent trends in the strategies used to incorporate them into different polymeric matrices. Moreover, a thorough discussion regarding the main factors affecting the retention capacity and controlled release of volatile compounds from active food packaging is presented

    Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues

    Get PDF
    Poly(ε-caprolactone), PCL, degradation by microorganisms is a very interesting feature for its potential use in massive applications, such as food packaging. Blends of PCL with natural fibres, such as those from agricultural and food processing wastes, have proved effective by permitting a substantial reduction of the material costs, but also playing a role as reinforcement in mechanical properties. This study is focused on the evaluation of morphological, mechanical, thermal, barrier properties and degradation in composting environment of new bio-composites based on PCL and almond skin (AS) filler at different contents (0, 10, 20 and 30 wt%). Results showed a clear improvement in mechanical properties, corresponding to a gain in elastic modulus of 17% at 10 wt% particle loading. Lower melting and crystallization enthalpies and higher crystallinity values were obtained for bio-composites compared with neat PCL. Some decrease in thermal stability and increase in oxygen and water vapour barrier properties were also observed for composites with increasing filler content. PCL/AS composites showed higher biodegradability than pure PCL, which can be explained in terms of the depressed crystallization enthalpy of the polymer matrix and improved hydrophilicity. PCL-based composites reinforced with almond skin filler at 10 wt% loading have shown as promising environmentally-friendly materials for food packaging showing a high disintegration rate, increasing the added-value potential of agricultural wastes and reducing the packaging cost.Spanish Ministry of Economy and Competitiveness (MAT-2011-28468-C02-01). Arantzazu Valdés acknowledges Conselleria de Educación (Spain) for ACIF/2010/172 Predoctoral Research Training Grant

    Gelatin-Based Films and Coatings for Food Packaging Applications

    Get PDF
    This review discusses the latest advances in the composition of gelatin-based edible films and coatings, including nanoparticle addition, and their properties are reviewed along their potential for application in the food packaging industry. Gelatin is an important biopolymer derived from collagen and is extensively used by various industries because of its technological and functional properties. Nowadays, a very wide range of components are available to be included as additives to improve its properties, as well as its applications and future potential. Antimicrobials, antioxidants and other agents are detailed due to the fact that an increasing awareness among consumers regarding healthy lifestyle has promoted research into novel techniques and additives to prolong the shelf life of food products. Thanks to its ability to improve global food quality, gelatin has been particularly considered in food preservation of meat and fish products, among others.Authors would like to thank Spanish Ministry of Economy and Competitiveness for financial support (MAT-2015-59242-C2-2-R)

    Application of Dispersive Liquid–Liquid Aerosol Phase Extraction to the Analysis of Total and Individual Phenolic Compounds in Fried Extra Virgin Olive Oils

    Get PDF
    Seventeen extra virgin olive oil samples from Valencian Community (Spain) were submitted to a domestic-frying process (180 °C) during different degradation times (5, 10, 30, 60, 120 min). A dispersive liquid–liquid aerosol phase extraction by using a methanol/water (50:50) extracting solution was used to isolate the polyphenol fraction. Total phenolic content (TPC) was determined, whereas the determination of seven individual target polyphenolic compounds (hydroxytyrosol, tyrosol, oleuropein, vanillic acid, p-coumaric acid, ferulic acid, and vanillin) was carried out by using ultrahigh-performance liquid chromatography coupled to a tandem mass spectrometer. Statistically significant differences in the TPC values were found for Blanqueta and Manzanilla samples from different harvesting years. The domestic-frying process impacted the TPC and the individual phenolic compounds content. Thermal treatment for 2 h gave rise to a 94% decrease in the TPC. A first-order kinetic model was suitable to accurately describe the degradation of the individual phenolic compounds.The authors wish to thank the Spanish Ministry of Science, Innovation, and Universities for the financial support (project ref. PID2021-127566NB-I00)

    Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films

    Get PDF
    The migration of antioxidant (AO) agents, carvacrol and thymol, from polypropylene (PP) packaging films containing the studied compounds at 80 g/kg separately and an equimolar mixture of them into food simulants was investigated. Fast and reliable analytical procedures were developed and validated for the analysis of the studied AOs in food simulants. For aqueous food simulants, solid phase extraction followed by GC–MS analysis was performed. Fatty food simulants were directly analysed by GC–MS and HPLC-UV for isooctane and ethanol 950 mL/L, respectively. The release of AOs from the films was dependent on the type of food stimulant and AO incorporated. In particular, high levels of migration were obtained for both AOs into isooctane, showing thymol higher migration. The release kinetics of AOs from PP films showed a Fichian behaviour with diffusion coefficients ranging from 1 to 2 × 10−14 m2/s; except for the diffusion into isooctane where 4-6 higher values were obtained. The antioxidant activity of migration extracts was confirmed by the DPPH method, showing thymol a higher antioxidant capacity especially into isooctane with a 42.2% of inhibition. The obtained results suggest that carvacrol and thymol show a potential use as AOs for active packaging for extending the shelf-life of food products.Spanish Ministry of Economy and Competitiveness (MAT-2011-28640-C02-01). Marina Ramos would like to thank University of Alicante (Spain) for UAFPU2011-48539721S predoctoral research grant

    Novel Antioxidant Packaging Films Based on Poly(ε-Caprolactone) and Almond Skin Extract: Development and Effect on the Oxidative Stability of Fried Almonds

    Get PDF
    Antioxidant films based on poly(ε-caprolactone) (PCL) containing almond skin extract (ASE) were developed for food packaging applications. The effect of ASE incorporation on the morphological, structural, colour, mechanical, thermal, barrier and antioxidant properties of the prepared films were evaluated. The structural, tensile and thermal properties of the films were not altered due to ASE addition. Although no significant differences were observed for the oxygen permeability of samples, some increase in water absorption and water vapour permeability was observed for active films due to the hydrophilic character of ASE phenolic compounds, suggesting the suitability of this novel packaging for fatty foods conservation. ASE conferred antioxidant properties to PCL films as determined by the DPPH radical scavenging activity. The efficiency of the developed films was evaluated by the real packaging application of fried almonds at different ASE contents (0, 3, 6 wt.%) up to 56 days at 40 °C. The evolution of peroxide and p-anisidine values, hexanal content, fatty acid profile and characteristic spectroscopy bands showed that active films improved fried almonds stability. The results suggested the potential of PCL/ASE films as sustainable and antioxidant food packaging systems to offer protection against lipid oxidation in foods.A. Valdés acknowledges Conselleria de Educación (Spain) for ACIF/2010/172 Predoctoral and for APOSTD/2016/093 Postdoctoral Research Training Grants

    Multielemental analysis of oils and animal fat by using deep eutectic solvents assisted by an aerosol phase extraction procedure

    Get PDF
    In the present study, thirteen elements (Ag, Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Ni, Pb) have been extracted from used cooking oils, olive oils and animal fat. Either inductively coupled plasma optical emission spectrometry (ICP-OES) or tandem mass spectrometry (ICP-MS/MS) have been chosen as detection techniques. Due to the difficulty of directly introducing highly viscous organic samples into the spectrometer, a fast dispersive liquid – liquid aerosol phase extraction (DLLAPE) method has been selected to isolate the analytes from the sample matrix. The DLLAPE is based on the generation of an aerosol from the extracting phase with the help of a pneumatic nebulizer. This high velocity aerosol impacts and penetrates in the liquid sample. Consequently, the liquid – liquid exchange surface area becomes high, thus leading to high extraction yields. A hydrophilic deep eutectic solvent (DES) consisting of choline chloride and ethylene glycol (1:2 mass ratio) has been selected as the extracting solvent. Prior to undertaking the experiments, the extraction method has been evaluated in terms of precision under suitable conditions. In comparison with conventional methods based on sample digestion, sample dilution and shot analysis or extraction assisted by vortex agitation, the DLLAPE shows several advantages, because it is faster, and it provides lower limits of detection than the reference methodologies. The procedural limits of quantification for the determined elements with the DLLAPE in ICP-OES were 0.046 (Ag), 0.396 (Al), 0.013 (Cd), 0.033 (Cr), 0.040 (Cu), 0.20 (Fe), 0.026 (K), 0.026 (Li), 0.33 (Mg), 0.013 (Mn), 2.64 (Ni) and 0.53 (Pb) mg kg−1. Meanwhile, pLOQ in ICP-MS/MS lowered by roughly one order of magnitude. The accuracy of the aerosol phase extraction method has been evaluated through the determination of the recoveries for four representative analytes (Ca, Cu, Mg and Ni) from spiked real samples. For these elements, recovery has taken values of (100 ± 20)%. Moreover, a comparison of the multielemental concentration obtained with conventional methods (c.a., sample dilution and shot ICP analysis and liquid-liquid extraction using a vortex agitator) against that measured with the DLLAPE has been carried out. Multiemelemental concentrations have been obtained for real samples and the found levels have been similar to those encountered in previously published works.The authors wish to thank to the Spanish Ministry of Science, Innovation and Universities for the financial support (Projects Ref. PID2021-127566NB-I00 and PID2021-127322NB-100)

    State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications

    Get PDF
    The interest for the development of new active packaging materials has rapidly increased in the last few years. Antimicrobial active packaging is a potential alternative to protect perishable products during their preparation, storage and distribution to increase their shelf-life by reducing bacterial and fungal growth. This review underlines the most recent trends in the use of new edible coatings enriched with antimicrobial agents to reduce the growth of different microorganisms, such as Gram-negative and Gram-positive bacteria, molds and yeasts. The application of edible biopolymers directly extracted from biomass (proteins, lipids and polysaccharides) or their combinations, by themselves or enriched with natural extracts, essential oils, bacteriocins, metals or enzyme systems, such as lactoperoxidase, have shown interesting properties to reduce the contamination and decomposition of perishable food products, mainly fish, meat, fruits and vegetables. These formulations can be also applied to food products to control gas exchange, moisture permeation and oxidation processes.The authors acknowledge the funding support of the Spanish Ministry of Economy and Competitiveness (MINECO, Ref. MAT2014-59242-C2-2-R)

    Characterization of Poly(ε-caprolactone)-Based Nanocomposites Containing Hydroxytyrosol for Active Food Packaging

    Get PDF
    Antioxidant nano-biocomposites based on poly(ε-caprolactone) (PCL) were prepared by incorporating hydroxytyrosol (HT) and a commercial montmorillonite, Cloisite®30B (C30B), at different concentrations. A full structural, thermal, mechanical and functional characterization of the developed nano-biocomposites was carried out. The presence of the nanoclay and HT increased PCL crystallinity, whereas some decrease in thermal stability was observed. TEM analyses corroborated the good dispersion of C30B into the PCL macromolecular structure as already asserted by XRD tests, since no large aggregates were observed. A reduction in oxygen permeability and increase in elastic modulus were obtained for films containing the nanoclay. Finally, the presence of the nanoclay produced a decrease in the HT release from films due to some interaction between HT and C30B. Results proved that these nano-biocomposites can be an interesting and environmentally-friendly alternative for active food packaging applications with antioxidant performance.Financial support by the Spanish Ministry of Economy and Competitiveness (Ref. MAT2011-28468-C02-01) and University of Alicante (UAUSTI12-04)

    Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (Prunus amygdalus): A Multivariate Analysis Approach

    Get PDF
    A microwave-assisted extraction (MAE) procedure to isolate phenolic compounds from almond skin byproducts was optimized. A three-level, three-factor Box–Behnken design was used to evaluate the effect of almond skin weight, microwave power, and irradiation time on total phenolic content (TPC) and antioxidant activity (DPPH). Almond skin weight was the most important parameter in the studied responses. The best extraction was achieved using 4 g, 60 s, 100 W, and 60 mL of 70% (v/v) ethanol. TPC, antioxidant activity (DPPH, FRAP), and chemical composition (HPLC-DAD-ESI-MS/MS) were determined by using the optimized method from seven different almond cultivars. Successful discrimination was obtained for all cultivars by using multivariate linear discriminant analysis (LDA), suggesting the influence of cultivar type on polyphenol content and antioxidant activity. The results show the potential of almond skin as a natural source of phenolics and the effectiveness of MAE for the reutilization of these byproducts.We acknowledge the Spanish Ministry of Economy and Competitiveness for financial support (MAT-2011-28468-C02-01). A.V. thanks Conselleria de Educación (Spain) for ACIF/2010/172 Predoctoral Research Training Grant
    corecore