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ABSTRACT 13 

The migration of antioxidant (AO) agents, carvacrol and thymol, from polypropylene (PP) 14 

packaging films containing the studied compounds at 80 g/kg separately and an equimolar 15 

mixture of them into food simulants was investigated. Fast and reliable analytical procedures 16 

were developed and validated for the analysis of the studied AOs in food simulants. For 17 

aqueous food simulants, solid phase extraction followed by GC-MS analysis was performed. 18 

Fatty food simulants were directly analyzed by GC-MS and HPLC-UV for isooctane and 19 

ethanol 950 mL/L, respectively. The release of AOs from the films was dependent on the type 20 

of food stimulant and AO incorporated. In particular, high levels of migration were obtained for 21 

both AOs into isooctane, showing thymol higher migration. The release kinetics of AOs from 22 

PP films showed a Fichian behaviour with diffusion coefficients ranging from 1-2×10−14 m2/s; 23 

except for the diffusion into isooctane where 4-6 higher values were obtained. The antioxidant 24 

activity of migration extracts was confirmed by the DPPH method, showing thymol a higher 25 

antioxidant capacity especially into isooctane with a 42.2 % of inhibition. The obtained results 26 

suggest that carvacrol and thymol show a potential use as AOs for active packaging for 27 

extending the shelf-life of food products. 28 
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 30 

1. Introduction 31 

Antioxidant active food packaging is a growing alternative to common procedures to 32 

protect sensitive oxidation of food such as the addition of antioxidants directly in food samples 33 

in combination with vacuum or modified atmosphere (Lopez-de-Dicastillo et al., 2011). These 34 

systems are usually based on materials in which some additives showing antioxidant properties 35 

are added directly into the polymer matrix. These additives can play a double role: a food 36 

protection by their controlled release, in particular avoiding fat and pigment components 37 

oxidation (Del Nobile et al., 2009); and to protect the polymer from degradation during 38 

processing. In fact, the addition of antioxidants to polyolefins is a common practice during film 39 

manufacturing (Siró et al., 2006; Tovar, Salafranca, Sanchez, & Nerin, 2005). 40 

The new trends in using natural additives have produced a clear increase in the number of 41 

studies based on natural active compounds, such as α-tocopherol (Barbosa-Pereira et al., 2013), 42 

aromatic plant extracts (Dopico-García et al., 2011; Lopez-de-Dicastillo et al., 2011) and 43 

polyphenols from natural oils (Park et al., 2012; Peltzer, Wagner, & Jiménez, 2009). The 44 

principal constituents of oregano essential oil, thymol and carvacrol, exhibit a high antioxidant 45 

activity as it has been reported (Tomaino et al., 2005); and they are generally recognized as safe 46 

(possess “GRAS” status) and as flavouring substances according to European Commission 47 

Decision 2002/113/EC. Their antioxidant activity can be evaluated by using diverse methods, 48 

such as DPPH (2,2’-diphenyl-1-picrylhydrazyl), which is usually used due to its simple, rapid, 49 

sensitive, and reproducible procedure (Ozcelik, Lee, & Min, 2003). 50 

The release rate of AOs from the packaging material can be evaluated by using migration 51 

studies, which are usually performed using food simulants and conditions specified in European 52 

food packaging regulations (EC, 2011; Kuorwel, Cran, Sonneveld, Miltz, & Bigger, 2013). 53 

Migration is the result of diffusion, dissolution and equilibrium processes involving the mass 54 

transfer of low molecular mass compounds initially present in the package into a food sample or 55 

food simulant; and it is often described by Fick’s second law (Manzanarez-López, Soto-Valdez, 56 
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Auras, & Peralta, 2011). Chromatographic methods are usually used for identification and 57 

quantification of migrated compounds (Salafranca, Pezo, & Nerín, 2009). Also, concentration 58 

and/or isolation of analytes into a suitable solvent may be performed prior to chromatographic 59 

analysis by the use of sample preparation and purification techniques such as solid phase 60 

extraction (SPE) in order to improve detection and quantification (Burman, Albertsson, & 61 

Höglund, 2005; Ridgway, Lalljie, & Smith, 2007). 62 

In a previous study, the effect of the addition of carvacrol and thymol at different 63 

concentrations to PP films on the thermal, structural, mechanical and functional properties was 64 

studied as well as the evaluation of the antimicrobial activity against two typical food born 65 

bacteria, E. coli and S aureus, (Ramos, Jiménez, Peltzer, & Garrigós, 2012). It was concluded 66 

that the addition of both compounds at 80 g/kg showed some potential to be used as active 67 

additives in PP formulations; showing thymol higher inhibition against the studied bacteria, 68 

leading to higher antimicrobial activity. The aim of this study was to evaluate the release of 69 

these compounds from PP films into different aqueous and fatty food simulants; including a 70 

kinetics diffusion study and the evaluation of the antioxidant efficiency by the DPPH method. 71 

 72 

2. Experimental 73 

2.1. Chemicals 74 

All reagents used were of analytical or chromatographic grade and were purchased from 75 

Panreac (Barcelona, Spain). Standards of carvacrol (≥ 98 %), thymol (99.5 %), and  2,2-76 

diphenyl-1-picrylhydrazyl (DPPH, 95 %) were acquired from Sigma–Aldrich Inc. (St. Louis, 77 

MO). Ultrapure water was obtained from a Millipore Milli-Q system (Millipore, Bedford, MA, 78 

USA). Polypropylene PP ECOLEN HZ10K pellets (Hellenic Petroleum, Greece) was kindly 79 

supplied by Ashland Chemical Hispania (Barcelona, Spain). 80 

 81 

2.2. Films preparation 82 

PP active films were obtained by melt blending  at 190 ºC for 6 min at 50 rpm followed by 83 

compression moulding at 190 ºC in a hot press, according to a method previously developed 84 
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(Ramos et al., 2012). Three active formulations were obtained: PP containing 80 g/kg of thymol 85 

(PPT8) or carvacrol (PPC8); and PP with an equimolar mixture of both additives at 80 g/kg 86 

(PPTC8) to study a possible additive effect of both compounds. An additional sample without 87 

any active compound was also prepared as control (PP0). The film thickness was measured 88 

using a micrometer (Mitutoyo, Japan) at five random positions. The average thickness of PP 89 

films incorporated with thymol (PPT8), carvacrol (PPC8) and both additives (PPTC8) was 90 

found to be 185 ± 3, 192 ± 6 and 190 ± 4 µm, respectively. The final appearance of the films 91 

was completely transparent and homogenous. 92 

 93 

2.3. Migration study 94 

2.3.1. Release tests 95 

The release of AOs from PP films was performed into five food simulants according to 96 

European Standard EN 13130-2005 (UNE-EN, 2005): distilled water (A), acetic acid 30 g/L 97 

(B), and  ethanol 100 mL/L (C) were used as aqueous food simulants; whereas ethanol 950 98 

mL/L and isooctane were employed as fatty food simulants. 99 

Migration studies were conducted in triplicate at 40 ºC for 10 days in an oven (J.P. Selecta, 100 

Barcelona, Spain), except for isooctane studies which were performed at 20 ºC and 50% relative 101 

humidity for 2 days in a climatic chamber (Dycometal, Barcelona, Spain). Double-sided, total 102 

immersion migration tests were performed with 12 cm2 of films and 20 mL of each simulant 103 

(area-to-volume ratio around 6 dm2/L). A blank test for each simulant was also carried out. 104 

 105 

2.3.2. Migration kinetics 106 

In order to study the release of carvacrol and thymol during a suitable period of time (15 107 

days), a kinetic study was performed using acetic acid 30 g/L, ethanol 100 mL/L, ethanol 950 108 

mL/L and isooctane as food simulants, at the same temperature conditions described in section 109 

2.3.1. Extract samples were taken at 2, 6, 12, 24, 48 hours and 5, 10 and 15 days in triplicate. 110 

The migration process is described by the kinetic of the diffusion of the migrant in the film 111 

and it is expressed by the diffusion coefficient, D (m2/s) (Manzanarez-López et al., 2011). 112 
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Considering the case of limited packaging, limited food, where migration occurs from a limited 113 

volume packaging film into a well-mixed limited volume of food, the diffusion coefficients of 114 

AOs can be determined by using a release kinetic model based in the Fick’s second law 115 

(Equation 1). In this case, the food sample initially does not contain any migrant, and as 116 

migration occurs, the concentration of migrant in the food increases from zero CF,0 to its 117 

equilibrium value CF,∞. Equation (1) is the most rigorous general model for describing the 118 

migration controlled by Fickian diffusion in a packaging film (Crank, 1975; Chung, Papadakis, 119 

& Yam, 2002): 120 
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where MF,t and MF,∞ are the total amount of diffusing substance (AO) released by the film at 122 

time t and after infinite time, respectively; PL  is the film thickness; nq  are the non-zero 123 

positive roots of nn qqtan ⋅−= α ; and α is the partition expressed as: 124 

α = (KFP VF) / Vp                                                                                                                           (2) 125 

where VF and VP are the volumes of the simulant and the polymer, respectively; and KFP is the 126 

partition coefficient of the active compound between the simulant and the polymer. 127 

A simplified migration model derived from Equation (1) was proposed by Chung et al. 128 

useful for linear regression analysis (Chung et al., 2002): 129 
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where MP,0 is the initial amount of migrant in the packaging film (for a complete migration 131 

MP,0= MF,∞). Thus, the diffusion coefficient can be directly computed from the fitting of 132 

Equation (3) to experimental migration data. 133 

 134 

2.4. Analysis of released antioxidants into food simulants 135 

The amount of released AOs into aqueous food simulants was analyzed by GC-MS with a 136 

previous extraction and concentration step by SPE on an octadecyl cartridge (C18, 500 mg, 6 137 
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mL) (Teknokroma, Barcelona, Spain). A Büchi V-700 vacuum system (Flawil, Switzerland) and 138 

a vacuum manifold from Teknokroma (Barcelona, Spain) were used for SPE sample processing. 139 

The cartridge was previously conditioned with 4 mL methanol and 4 mL distilled water at 5 140 

mL/min. Then, the extract was loaded and elution of the AOs was carried out with 4 mL 141 

dichloromethane (1 mL/min). On the other hand, extracts obtained from isooctane and ethanol 142 

950 mL/L were directly analyzed by GC-MS and HPLC-UV, respectively. 143 

Stock (4000 mg/kg) and working solutions of each AO were prepared in the appropriate 144 

solvent (dichloromethane, isooctane or ethanol 950 mL/L) depending on the food simulant and 145 

chromatographic technique used and stored in a freezer. Carvacrol and thymol quantification 146 

was performed using external calibration in triplicate. 147 

 148 

2.4.1. GC-MS analysis 149 

A Perkin Elmer TurboMass Gold GC-MS (Boston, MA, USA) operating in electronic 150 

impact ionisation mode (70 eV) with a SPB-5 capillary column (30 m × 0.25 mm × 0.25 µm; 151 

Supelco, Bellefonte, PA) was used. The column temperature was programmed from 60 ºC (1 152 

min) to 120 ºC (1 min) at 10 ºC/min and to 150 ºC at 2 ºC/min (2 min). Helium was used as 153 

carrier gas at 1 mL/min. Ion source and GC–MS transfer line temperatures were 250 and 270 154 

ºC, respectively. Injector temperature was 270 ºC and 1 µL of extracts were injected (split mode 155 

1:100). 156 

Identification of thymol and carvacrol were performed in full scan mode (m/z 30–550) by a 157 

combination of NIST mass spectral library and retention times of standard compounds. 158 

Quantification of AOs was performed by using selected ion monitoring (SIM) mode focused on 159 

m/z 91, 135 and 150. Retention times obtained for thymol and carvacrol were 10.7 and 11.0 160 

min, respectively. 161 

 162 

2.4.2. HPLC-UV analysis 163 

A Shimadzu LC-20A liquid chromatograph equipped with UV detector and a LiChrospher 164 

100 RP18 column (250 mm × 5 mm × 5 µm, Agilent Technologies) was used. The mobile phase 165 
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consisted of acetonitrile: distilled water, 40:60 (v:v) at 1 mL/min. 20 µL of sample were 166 

injected. Detection of carvacrol and thymol was performed at 274 nm with retention times of 167 

18.9 and 21.0 min, respectively. 168 

 169 

2.4.3. Determination of antioxidant activity 170 

The antioxidant activity of AOs released into food simulants was analyzed in terms of 171 

radical scavenging ability, using the stable radical DPPH method as proposed by Byun et al. 172 

(Byun, Kim, & Whiteside, 2010) with some modifications. An aliquot of 100 µl of each 173 

simulant extract was mixed with 3.9 mL of a methanolic solution of DPPH (23 mg/L) in a 174 

capped cuvette. The mixture was shaken quickly at room temperature and the absorbance of the 175 

solution was measured immediately at 517 nm every 1 min until the absorbance value was 176 

stabilized (200 min), by using a Biomate-3 UV-VIS spectrophotometer (Thermospectronic, 177 

USA). All analyses were performed in duplicate. 178 

The ability to scavenge the stable radical DPPH was calculated as percent of inhibition (I 179 

%) using the following Equation (4): 180 

I(%) = [(AControl-ASample)/AControl]·100                                                                                            (4) 181 

where AControl and ASample are the absorbances of the control at t = 0 min (using methanol instead 182 

of sample) and of the tested sample at t = 200 min, respectively. 183 

 184 

2.5. Statistical analysis 185 

One way analysis of variance (ANOVA) was applied on DPPH experimental data with the 186 

aid of the statistical program “Statgraphics Centurion program v.16.1.18 (StatPoint, Inc., 187 

Warrenton, USA)” and significant differences among sample data were recorded at P < 0.05 188 

according to Tukey´s post hoc test (Barbara G. Tabachnick, 2013). 189 

 190 

3. Results and Discussion 191 

3.1. Validation of the developed methods. 192 
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The analytical methods developed in this study were validated by assessing the main 193 

analytical characteristics: linearity, precision (repeatability), detection (LOD) and quantification 194 

(LOQ) limits and accuracy (recovery test). 195 

Linear ranges were calculated with five calibration points, each one in triplicate (0.15-2.10 196 

mg/kg in dichloromethane for SPE-GC-MS method and aqueous food simulants; 0.15-4.00 197 

mg/kg for isooctane and 950 mL/L ethanol (v/v) for direct GC-MS and HPLC-UV analyses, 198 

respectively). The calculated calibration curves gave an acceptable level of linearity for AOs 199 

and studied methods with determination coefficients (R2) ranging between 0.9963-0.9989, as 200 

shown in Table 1. 201 

Table 1. 202 

Repeatability was evaluated by analyzing three replicates of standard solutions processed 203 

the same day. All methods showed similar results for relative standard deviation (RSD) values 204 

which were lower than 10 %. LOD and LOQ values were determined by using regression 205 

parameters from the calibration curves (3 Sy/x/a and 10 Sy/x/a, respectively; where Sy/x is the 206 

standard deviation of the residues and a is the slope). As it can be seen in Table 1, lower values 207 

for LOD and LOQ were obtained for thymol by the HPLC-UV method. On the other hand, 208 

carvacrol showed lower values for these parameters considering the SPE-GC-MS method. As a 209 

result, the LODs and LOQs values obtained for AOs ranged between 0.16-0.22 mg/kg and 210 

between 0.50-0.74 mg/kg, respectively. 211 

Recovery tests for the SPE-GC-MS method were accomplished, in triplicate, in order to 212 

evaluate accuracy, by spiking aqueous food simulants with known amounts of each AO at three 213 

concentration levels (0.03, 0.27 and 2.60 mg). A working solution containing both AOs (4000 214 

mg/kg) in methanol was used. Satisfactory results were obtained for mean recoveries at all 215 

levels tested (Table 2), ranging from 86.7-108.2 % with RSD values between 2.1-11.0 %. In 216 

conclusion, the results obtained for methods validation were considered acceptable for the 217 

determination of carvacrol and thymol migration in aqueous and fatty food simulants. 218 

Table 2. 219 

 220 
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3.2. Release of AOs into food simulants. 221 

Both AOs were readily released into aqueous and fatty food simulants from all PP films 222 

(Table 3). Similar behaviour was observed for thymol and carvacrol migration under the same 223 

migration conditions. However, thymol showed higher migration tendencies than carvacrol for 224 

distilled water. Also, the amount of active additives released into fatty food simulants was 225 

higher than those obtained for the aqueous ones. In particular, the highest migration levels were 226 

obtained into isooctane at 20 ºC during 2 days compared with the rest of simulants where 40 ºC 227 

and 10 days were used. This phenomenon might result from the higher affinity of the non-polar 228 

PP to the also non-polar isooctane than to the highly polarity of ethanol 950 mL/L or other polar 229 

food simulants used, therefore showing diffusion behaviour near to extraction rather than 230 

migration, ultimately leading to high migration values. 231 

Table 3. 232 

The higher migration observed into fatty food simulants could be also attributed to two 233 

factors: the higher solubility of migrated AOs into these solvents and the phenomenon of 234 

swelling of the polymer matrix when the films come into contact with simulants (Suppakul, 235 

Sonneveld, Bigger, & Miltz, 2011). Tehrany et al. (Tehrany, Mouawad, & Desobry, 2007) 236 

indicated that migrant polarity can be a predominant controlling factor and that a simulant with 237 

similar high polarity could have a great effect on sorption. In this sense, partitioning depends on 238 

the polarity and solubility of the migrant in the food simulant. In our case, the higher release of 239 

carvacrol and thymol into 950 mL/L ethanol rather than 100 mL/L ethanol showed the influence 240 

of simulant polarity and AO solubility. Also, it can be assumed that certain amount of simulant 241 

will penetrate into the matrix, enhancing the mobility of the target AOs inside the polymer 242 

chains, which could promote migration. This behaviour has also been suggested in previous 243 

studies for the migration of some AOs from polyolefins into fatty food simulants (Haider & 244 

Karlsson, 2000; Kuorwel et al., 2013; Peltzer et al., 2009; Tovar et al., 2005). 245 

Regarding aqueous food simulants, migration of AOs was also observed although the 246 

solubility of both compounds in aqueous solutions is low; with migration values increasing by 247 

using acetic acid 30 g/L and ethanol 100 mL/L. The migration of AOs into these simulants 248 
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might be due mainly to two factors: the hydrophilic character of these additives described in 249 

literature (Peltzer et al., 2009); and the small size of these compounds, and thus faster diffusion, 250 

since the diffusion rate is governed by the mobility of the additives which is determined by the 251 

size and geometry of the diffusing compound (Haider & Karlsson, 2000; Reynier, Dole, 252 

Humbel, & Figenbaum, 2001). This behaviour was also observed for Mastromatteo et al. who 253 

demonstrated that the release of thymol from a swelling homogeneous polymeric network could 254 

be viewed as a result of the water diffusion from the outer water solution into the polymeric 255 

matrix, the macromolecular matrix relaxation and the diffusion of the active compound from the 256 

swollen polymeric network into the outer water solution (Mastromatteo, Barbuzzi, Conte, & Del 257 

Nobile, 2009). Also, it has to be considered the difference in polarity between the polar 258 

migrated substances and the non-polar polymer. 259 

 260 

3.3. Antioxidant activity of migration extracts. 261 

The antioxidant activity of carvacrol and thymol has been reported in previous studies, 262 

although the mechanism of such activity is not fully understood (Yanishlieva, Marinova, 263 

Gordon, & Raneva, 1999). The antioxidant activity depends not only on the compound structure 264 

but also on many other factors, such as concentration, temperature, light, simulant type and 265 

physical state of the system (e.g. pH). 266 

Fig. 1 267 

The antioxidant capacities of the obtained extracts were evaluated by DPPH radical assay 268 

(Fig. 1). No DPPH inhibition was observed in acetic acid 30 g/L, possibly due to the pH of this 269 

simulant. The absorbance of DPPH could decrease by light exposure, oxygen content, pH, and 270 

solvent type (Ozcelik et al., 2003). Regarding pH, it has been reported that generally, the 271 

increase of hydrogen ion concentration leads to the decrease of the reaction rate of chromogen 272 

radical scavenging, whereas under basic conditions proton dissociation of polyphenolics would 273 

enhance the reducing capacity of compounds (Pyrzynska & Pekal, 2013). On the other hand, all 274 

the other extracts presented an appreciable antioxidant activity, showing a significant inhibition 275 

of the DPPH radical. A higher antioxidant capacity was observed for thymol extracts, with the 276 
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highest inhibition obtained into isooctane (42.2 ± 1.1 %). The ANOVA results also showed that 277 

independently of the variations introduced by the use of the different simulants, the formulation 278 

with 80 g/kg of thymol was significantly different from the other ones regarding antioxidant 279 

capacity (Fig. 2). 280 

Fig. 2. 281 

These results showed that thymol antioxidant activity was superior to that of carvacrol, 282 

possibly due to greater steric hindrace of the thymol phenolic group; as different authors have 283 

concluded when considering the mechanism of action of these compounds in the DPPH assay 284 

(Wu, Luo, & Wang, 2012; Yanishlieva et al., 1999). Other compounds having a hydroxyl group 285 

sterically hindered, such as BHT, have been also reported to possess high antioxidant activity 286 

(Mastelic et al., 2008). 287 

The DPPH inhibition values were correlated with the AOs amount released from the films 288 

(Table 3). The highest amount of released additives was observed into fatty food simulants; 289 

although no significant differences between isooctane and ethanol 950 mL/L were observed 290 

with different formulations at P < 0.05 (Fig. 1). The obtained results indicate that a considerable 291 

quantity of the AOs remain in the polymer matrix and consequently could act as active agents in 292 

these materials. In this sense, the obtained PP films could be used as AO films for food 293 

packaging applications in order to extend the shelf-life of food products, retarding oxidation 294 

processes. In addition, it has been reported that these additives could be also used to protect the 295 

polymer against oxidative degradation during processing and further use (Ramos et al., 2012). 296 

Finally, the study of the combined activity of carvacrol and thymol in the same film at 40 297 

g/kg of each compound (PPTC8) (Fig. 1) showed some additive effect between them as similar 298 

results were obtained for samples with 80 g/kg of each compound (PPC8 and PPT8) separately. 299 

This effect was more evident into fatty food simulants. 300 

 301 

3.4. Kinetics of AOs migration from active films. 302 

Information about diffusion coefficients through packaging materials is, in general, very 303 

useful to evaluate the performance of new active packaging materials, as the critical point in 304 
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antioxidant performance is the kinetics of release of the AO agent from the packaging. In order 305 

to have a deeper knowledge of the migration mechanism of the target AOs from PP films, 306 

kinetic experiments were carried out by using four different food simulants during 15 days. For 307 

this study, only formulations containing the studied AOs at 80 g/kg separately were considered. 308 

Fig. 3 and Fig. 4 show the release of thymol (a) and carvacrol (b) from PPT8 and PPC8 309 

films as a function of time, respectively. Similar behaviour was observed for both compounds, 310 

being rapidly released from their respective films into the studied food simulants, with an 311 

expected increase in their release with increasing time and reaching equilibrium after 312 

approximately 120 h.  313 

Fig. 3 and Fig. 4 314 

In a first approach, the higher amount of migrated analytes occurs to isooctane (see α 315 

values in Table 4). Furthermore, for this simulant, at t > 120 h, the equilibrium is not well 316 

defined and, for example, for PPT8 almost all previously encapsulated thymol is released in 317 

isooctane. This can be argued in two different ways: either by experimental or physical grounds. 318 

Starting with the former, it seems that the quantification of AOs in isooctane, for longer times, 319 

lead to scatter values and, consequently, the somewhat relevant increase of the amount of AOs 320 

released after 15 days cannot be relevant from statistics point of view. Another possible 321 

justification is based on the behaviour of the release of active compounds from polyolefin films 322 

immersed in food simulants by the “swelling-controlled” model (Suppakul et al., 2011). 323 

According to this model, a simulant penetrates first into the polymer matrix and dissolves the 324 

active agents thereby enabling their subsequent release. Indeed, it is expected that a simulant 325 

uptake will cause polymer swelling. The migration of AOs is thus expected to increase with an 326 

increase in the simulant penetration into the PP film, reaching a plateau when the matrix is 327 

saturated with the simulant. However, many interactions take place during the migration of 328 

species from polymers into liquids. Moreover, it has pointed out that a time-dependent 329 

relaxation process could occur as a result of the swelling that takes place during the diffusion of 330 

the liquid into the polymer. As a consequence, release rates change continuously and the 331 

accurate mathematical analysis of the migration is difficult. The penetration of simulant 332 
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molecules facilitates further penetration by the plasticization of the polymer matrix, until a 333 

plateau is reached. As pointed out before, for isooctane an increase of migration after reaching 334 

the equilibrium was observed for both studied AOs at 360 h. This could be due to a combination 335 

of temperature and a longer time in which the PP films were penetrated by isooctane producing 336 

the increase on the release. Also, it can be speculated about the sorption of isooctane by the PP 337 

matrix and a consequent creation of void spaces favouring the migration of the phenolic 338 

compounds (Manzanarez-López et al., 2011). 339 

Table 4. 340 

The experimental release data shown in Fig. 3 were further analysed in terms of a diffusion 341 

model according to Equation (3). However, the use of this equation in order to compute 342 

diffusion coefficients needs the previous knowledge of partition values. According to the 343 

previous discussion it can be assumed that the amount of AO release can be estimated as being 344 

constant after ca. 120 h, and once Equation (3) can only be applied to MF,t/MP,0 < 0.6, the use of 345 

this equation do not interfere with the hypothetical (not confirmed) effect of the swelling-346 

process in the mass transport by diffusion. In these circumstances the release of AOs from PPT8 347 

and PPC8 to different simulations can be modelled by using the following equation: 348 

MF,t / MP, 0 = ( MF,∞ / MP,0) (1 - e-k′t)                                                                                              (5) 349 

where k’ is a constant related with the release rate constant. By fitting Eq. (5) to experimental 350 

AOs release data (see solid lines in Figs. 2 and 3), the values of MF,∞/MP,0 can be obtained and, 351 

finally apparent partition coefficients (αap) values can be calculated through the equation: 352 

MF∞ / MP, 0 = αap / (1+αap)                                                                                                           (6) 353 

Both parameters, MF,∞ / MP,0 and α  are reported in Table 4. 354 

It should be stressed that the choice of Eq. (5) has been done once, for the border and limit 355 

conditions of the experiments reported in this work, it describes a first order kinetic process 356 

(Reis, Guilherme, Rubira, & Muniz, 2007). In general, the fitting determination coefficients are 357 

higher than 0.96, with the exception of isooctane-containing systems where determination 358 

coefficients of 0.819 (PPC8) and 0.713 (PPT8) were obtained. 359 
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The results obtained for thymol and carvacrol are shown in Fig. 5A and Fig. 5B, 360 

respectively. As it can be seen, the linearity of 

5.0

0,

,11












⋅−

F

tF

M

M

απ
versus 5.0t  was very good for 361 

both AOs and all simulants tested with determination coefficient values (R2) ranging from 362 

0.961-0.995 for thymol and 0.983-0.992 for carvacrol, suggesting that experimental release data 363 

is well described by the proposed diffusion model for short-range times. 364 

Fig. 5A and 5B 365 

The analysis of diffusion coefficients (D) (Table 4) shows that the diffusion process in 366 

different simulants are independent on the AOs, with D values ranging from 1×10−14 to 2×10−14 367 

m2/s. This behaviour was expected if considering that carvacrol and thymol are isomers having 368 

similar molecular weights and polarity (Licciardello, Muratore, Mercea, Tosa, & Nerin, 2013). 369 

The exception occurs for the diffusion of AOs into isooctane. In fact, D values for thymol and 370 

carvacrol are 4 and 6 times higher for this simulant than the average values for remaining ones. 371 

This is, however, in line with the discussion carried out in the previous section and with results 372 

reported in section 3.2 as well. It is also worth noticing that the magnitude of D values found for 373 

these films are one order of magnitude lower than those obtained for similar AOs and films 374 

(Suppakul, Sonneveld, Bigger, & Miltz, 2011), suggesting that these films can provide a long 375 

term release, or higher retention inside films, of AOs. 376 

 377 

Conclusions 378 

The release study of carvacrol and thymol from PP films into aqueous and fatty food 379 

simulants was accomplished. Analytical methods for the determination of the target compounds 380 

in the studied food simulants were successfully developed and validated. Release of AOs from 381 

PP films showed some differences depending on the food simulant type used; being isooctane 382 

the most exhaustive one resulting in high levels of migration. In addition, positive results were 383 

obtained for all migration extracts by the antioxidant activity study performed by the DPPH 384 

method, showing thymol a higher antioxidant capacity. Finally, the results obtained for the 385 

migration kinetics study showed that carvacrol and thymol incorporated into PP films at 80 g/kg  386 
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were readily released into different food simulants, being these additives still remaining in the 387 

polymer after 15 days. In this sense, the high efficiencies of release of these compounds from 388 

PP films point to the great potential of these systems in antioxidant packaging of different food 389 

products to extend their shelf life and avoid the direct addition of additives to food formulations. 390 
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FIGURE CAPTIONS 497 

Fig. 1. Radical scavenging activity measured by DPPH, expressed as percent of inhibition, 498 

obtained for migration extracts from the three formulations studied (isooctane: 20 ºC, 2 days; 499 

rest of simulants: 40 ºC, 10 days) (m ± SD, n = 3). Different letters represent significant 500 

difference at P < 0.05. 501 

Fig. 2. Plot representing mean DPPH inhibition values (%) for the formulations PPT8, PPC8 502 

and PPTC8. Different letter represent significant differences at P < 0.05. 503 

Fig. 3. Release of thymol from PPT8 into different food simulants over 15 days. (A) Ethanol 504 

100 mL/L, 40 ºC; (B) acetic acid, 40 ºC; (C) Ethanol 950 mL/L, 40 ºC; and (D) isooctane, 20 505 

ºC. Solid lines were obtained by fitting Eq. (4) to experimental data. For further details see 506 

section 3.4. 507 

Fig. 4. Release of carvacrol from PPC8 into different food simulants over 15 days. (A) Ethanol 508 

100 mL/L, 40 ºC; (B) acetic acid, 40 ºC; (C) Ethanol 950mL/L, 40 ºC; and (D) isooctane, 20 ºC. 509 

Solid lines were obtained by fitting Eq. (4) to experimental data. For further details see section 510 

3.4. 511 

Fig. 5. Plots of 
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ºC. 515 

516 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 
 

Table 1. Main analytical parameters obtained for the studied AOs using the optimized methods 517 

(n = 3). 518 

Analyte Method 

Parameter 

Slope ± SD Intercept ± SD 
Linearity 

(R2)a 

LOD 

(mg/kg)b 

LOQ 

(mg/kg)c 

Carvacrol 

SPE-GC-MS 18416 ± 1907 -3881 ± 2372 0.9968 0.16 0.54 

Direct HPLC-UV 13510 ± 333 1195 ± 82 0.9963 0.20 0.66 

Direct GC-MS -2241 ±721 15103 ± 320 0.9982 0.22 0.73 

Thymol 

SPE-GC-MS 19792 ± 1120 -3868 ± 2377 0.9972 0.15 0.50 

Direct HPLC-UV 13936 ± 177 1091 ± 43 0.9989 0.10 0.34 

Direct GC-MS -1852 ± 701 14568 ± 316 0.9981 0.22 0.74 

a Number of calibration points = 5. Linear range: 0.15 – 2.10 (SPE-GC-MS); 0.15 – 4.00 (Direct HPLC-

UV and GC-MS). 

b Calculated for 3 Sy/x. 

c Calculated for 10 Sy/x 
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Table 2. Mean recoveries (%) and R.S.D. values (%) in parentheses obtained for each AO in 

aqueous simulants by SPE-GC-MS (n=3). 

Analyte Simulant 
Spiking level (mg) 

0.03 0.27 2.60 

Carvacrol 

Distilled water 98.1 (5.4) 94.7 (9.7) 108.2 (2.1) 

Ethanol 100 mL/L 95.2 (4.3) 100.3 (3.3) 89.8 (2.4) 

Acetic acid 30 g/L 99.4 (6.5) 88.0 (3.2) 97.2 (10.9) 

Thymol 

Distilled water 96.8 (5.8) 101.0 (3.6) 106.1 (2.4) 

Ethanol 100 mL/L 94.1 (3.8) 99.1 (3.4) 88.4 (2.5) 

Acetic acid 30 g/L 94.8 (4.9) 86.7 (3.2) 95.8 (11.0) 
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Table 3. Release of AOs (mg/kg simulant) obtained from PP films into aqueous and fatty food 

simulants under conditions according to European Standard EN 13130-2005 (n = 3, m ± SD). 

Analyte Film 

Simulant 

Watera 
Ethanol 

100 mL/La 

Acetic acid 

30 g/L a 

Ethanol 

950 mL/L a 
Isooctaneb 

Carvacrol 
PPC8 288 ± 20 718 ± 54 647 ± 47 880 ± 27 921 ± 157 

PPTC8 157 ± 19 285 ± 26 474 ± 44 347 ± 21 633 ± 34 

Thymol 
PPT8 433 ± 46 656 ± 30 689 ± 61 829 ± 19 1085 ± 112 

PPTC8 162 ± 18 362 ± 53 547 ± 51 367 ± 21 616 ± 49 

Migration conditions: a 40 ºC, 10 days; b 20 ºC, 2 days 
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Table 4. Diffusion coefficients (D×10−14, m2/s) calculated from equation 3 for the release of 

AOs from PP films into different food simulants (m ± SD, n = 3). 

   Simulant  

Analyte (Film)  
Ethanol 

100 mL/La 

Acetic acid 

30 g/L a 

Ethanol 

950 mL/L a 
Isooctaneb 

Carvacrol (PPC8) αap 1.38 ± 0.07 0.96± 0.04 1.27 ± 0.07 1.4 ± 0.1 

 D 1.20 ± 0.05 1.7 ± 0.1 1.99 ± 0.07 9.4 ± 0.6 

Thymol (PPT8) αap 1.56 ± 0.1 1.44 ± 0.05 1.56 ± 0.08 2.4 ± 0.2 

 D 1.75 ± 0.08 2.51 ± 0.02 1.01 ± 0.03 5.9 ± 0.1 

Migration temperature: a 40 ºC; b 20 ºC 
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Highlights 

- The migration of carvacrol and thymol from PP films into food simulants was studied. 

- The release of carvacrol and thymol from PP films showed a Fick’s behaviour. 

- The antioxidant activity of migration extracts was confirmed by the DPPH method. 

- Thymol showed higher migration and antioxidant activity into fatty food simulants. 

- Carvacrol and thymol show a potential use as antioxidants for active packaging. 


