10 research outputs found

    Split Options for 5G Radio Access Networks

    Get PDF
    5G networks are supposed to offer a high flexibility in a several ways. In this regard, a twofold split of the processing in the radio access network is under discussion: A control plane / user plane split to support the software defined network-ing principle and a radio protocol stack layer based split to allow a flexible placement of processing functions between a central and one or more distributed units. In this work, the motivation and state of the art for both splits are described including a discussion of the advantages and disadvantages. It is followed by a description of a network architecture al-lowing a flexible implementation of these splits. This especially focuses on the required interfaces between control and user plane

    5G Visualization: The METIS-II Project Approach

    Full text link
    [EN] One of the main objectives of the METIS-II project was to enable 5G concepts to reach and convince a wide audience from technology experts to decision makers from non-ICT industries. To achieve this objective, it was necessary to provide easy-to-understand and insightful visualization of 5G. This paper presents the visualization platform developed in the METIS-II project as a joint work of researchers and artists, which is a 3D visualization tool that allows viewers to interact with 5G-enabled scenarios, while permitting simulation driven data to be intuitively evaluated. The platform is a game-based customizable tool that allows a rapid integration of new concepts, allows real-time interaction with remote 5G simulators, and provides a virtual reality-based immersive user experience. As a result, the METIS-II visualization platform has successfully contributed to the dissemination of 5G in different fora and its use will be continued after METIS-II.This work has been performed in the framework of the H2020/5G-PPP project METIS-II cofunded by the EU. The authors wish to thank the rest of METIS-II colleagues who contributed to the development of the METIS-II visualization platform.Martín-Sacristán, D.; Herranz Claveras, C.; Monserrat Del Río, JF.; Szczygiel, A.; Kuruvatti, NP.; Garcia-Roger, D.; Prado-Alvarez, D.... (2018). 5G Visualization: The METIS-II Project Approach. Mobile Information Systems. 1-8. https://doi.org/10.1155/2018/2084950S18Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 25-32. doi:10.1109/mc.2005.297Johnson, C. (2004). Top scientific visualization research problems. IEEE Computer Graphics and Applications, 24(4), 13-17. doi:10.1109/mcg.2004.20Tullberg, H., Popovski, P., Li, Z., Uusitalo, M. A., Hoglund, A., Bulakci, O., … Monserrat, J. F. (2016). The METIS 5G System Concept: Meeting the 5G Requirements. IEEE Communications Magazine, 54(12), 132-139. doi:10.1109/mcom.2016.1500799cmLee, B., Riche, N. H., Isenberg, P., & Carpendale, S. (2015). More Than Telling a Story: Transforming Data into Visually Shared Stories. IEEE Computer Graphics and Applications, 35(5), 84-90. doi:10.1109/mcg.2015.99Yi, J. S., Kang, Y. ah, & Stasko, J. (2007). Toward a Deeper Understanding of the Role of Interaction in Information Visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1224-1231. doi:10.1109/tvcg.2007.70515Campbell, B. D. (2016). Immersive Visualization to Support Scientific Insight. IEEE Computer Graphics and Applications, 36(3), 17-21. doi:10.1109/mcg.2016.6

    D4.1 Draft air interface harmonization and user plane design

    Full text link
    The METIS-II project envisions the design of a new air interface in order to fulfil all the performance requirements of the envisioned 5G use cases including some extreme low latency use cases and ultra-reliable transmission, xMBB requiring additional capacity that is only available in very high frequencies, as well as mMTC with extremely densely distributed sensors and very long battery life requirements. Designing an adaptable and flexible 5G Air Interface (AI), which will tackle these use cases while offering native multi-service support, is one of the key tasks of METIS-II WP4. This deliverable will highlight the challenges of designing an AI required to operate in a wide range of spectrum bands and cell sizes, capable of addressing the diverse services with often diverging requirements, and propose a design and suitability assessment framework for 5G AI candidates.Aydin, O.; Gebert, J.; Belschner, J.; Bazzi, J.; Weitkemper, P.; Kilinc, C.; Leonardo Da Silva, I.... (2016). D4.1 Draft air interface harmonization and user plane design. https://doi.org/10.13140/RG.2.2.24542.0288

    D2.2 Draft Overall 5G RAN Design

    Full text link
    This deliverable provides the consolidated preliminary view of the METIS-II partners on the 5 th generation (5G) radio access network (RAN) design at a mid-point of the project. The overall 5G RAN is envisaged to operate over a wide range of spectrum bands comprising of heterogeneous spectrum usage scenarios. More precisely, the 5G air interface (AI) is expected to be composed of multiple so-called AI variants (AIVs), which include evolved legacy technology such as Long Term Evolution Advanced (LTE-A) as well as novel AIVs, which may be tailored to particular services or frequency bands.Arnold, P.; Bayer, N.; Belschner, J.; Rosowski, T.; Zimmermann, G.; Ericson, M.; Da Silva, IL.... (2016). D2.2 Draft Overall 5G RAN Design. https://doi.org/10.13140/RG.2.2.17831.1424

    Centralized coordinated scheduling in LTE-Advanced networks

    Get PDF
    This work addresses the problem associated with coordinating scheduling decisions among multiple base stations in an LTE-Advanced downlink network in order to manage inter-cell interference with a centralized controller. To solve the coordinated scheduling problem, an integer non-linear program is formulated that, unlike most existing approaches, does not rely on exact channel state information but only makes use of the specific measurement reports defined in the 3GPP standard. An equivalent integer linear reformulation of the coordinated scheduling problem is proposed, which can be efficiently solved by commercial solvers. Extensive simulations of medium to large-size networks are carried out to analyze the performance of the proposed coordinated scheduling approaches, confirming available analytical results reporting fundamental limitations in the cooperation due to out-of-cluster interference. Nevertheless, the schemes proposed in this paper show important gains in average user throughput of the cell-edge users, especially in the case of heterogeneous networks
    corecore