114 research outputs found

    The Baikal Deep Underwater Neutrino Experiment: Results, Status, Future

    Full text link
    We review the present status of the Baikal Underwater Neutrino Experiment and present results obtained with the various stages of the stepwise increasing detector: NT-36 (1993-95), NT-72 (1995-96) and NT-96 (1996-97). Results cover atmospheric muons, first clear neutrino events, search for neutrinos from WIMP annihilation in the center of the Earth, search for magnetic monopoles, and -- far from astroparticle physics -- limnology.Comment: Talk given at the Int. School on Nuclear Physics, Erice, Sept.199

    Registration of atmospheric neutrinos with the Baikal neutrino telescope

    Full text link
    We present first neutrino induced events observed with a deep underwater neutrino telescope. Data from 70 days effective life time of the BAIKAL prototype telescope NT-96 have been analyzed with two different methods. With the standard track reconstruction method, 9 clear upward muon candidates have been identified, in good agreement with 8.7 events expected from Monte Carlo calculations for atmospheric neutrinos. The second analysis is tailored to muons coming from close to the opposite zenith. It yields 4 events, compared to 3.5 from Monte Carlo expectations. From this we derive a 90 % upper flux limit of 1.1 * 10^-13 cm^-2 sec^-1 for muons in excess of those expected from atmospheric neutrinos with zenith angle > 150 degrees and energy > 10GeV.Comment: 20 pages, 11 figure

    The optical module of the Baikal deep underwater neutrino telescope

    Get PDF
    A deep underwater Cherenkov telescope has been operating since 1993 in stages of growing size at 1.1 km depth in Lake Baikal. The key component of the telescope is the Optical Module (OM) which houses the highly sensitive phototube QUASAR-370. We describe design and parameters of the QUASAR-370, the layout of the optical module, the front-end electronics and the calibration procedures, and present selected results from the five-year operation underwater. Also, future developments with respect to a telescope consisting from several thousand OMs are discussed.Comment: 30 pages, 24 figure

    Detection potential to point-like neutrino sources with the NEMO-km3 telescope

    Full text link
    The NEMO Collaboration is conducting an R&D activity towards the construction of a Mediterranean km3 neutrino telescope. In this work, we present the results of Monte Carlo simulation studies on the capability of the proposed NEMO telescope to detect and identify point-like sources of high energy muon neutrinos.Comment: To be published on BCN06 proceedings (Barcelona, July 4-7, 2006

    Baikal-GVD

    Full text link
    We present the status of the Gigaton Volume Detector in Lake Baikal (Baikal-GVD) designed for the detection of high energy neutrinos of astrophysical origin. The telescope consists of functionally independent clusters, sub-arrays of optical modules (OMs), which are connected to shore by individual electro-optical cables. During 2015 the GVD demonstration cluster, comprising 192 OMs, has been successfully operated in Lake Baikal. In 2016 this array was upgraded to baseline configuration of GVD cluster with 288 OMs arranged on eight vertical strings. Thus the instrumented water volume has been increased up to about 5.9 Mtons. The array was commissioned in early April 2016 and takes data since then. We describe the configuration and design of the 2016 array. Preliminary results obtained with data recorded in 2015 are also discussed

    The optical module of the Baikal deep underwater neutrino telescope

    No full text
    A deep underwater Cherenkov telescope has been operating since 1993 in stages of growing size at 1.1 km depth in Lake Baikal. The key component of the telescope is the optical module (OM) which houses the highly sensitive phototube QUASAR-370. We describe design and parameters of the QUASAR-370, the layout of the optical module, the front-end electronics and the calibration procedures, and present selected results from the five-year operation underwater. Also, future developments with respect to a telescope consisting from several thousand OMs are discussed. (orig.)19 refs.Available from TIB Hannover: RA 2999(98-091) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    In-situ measurements of optical parameters in Lake Baikal with the help of a neutrino telescope

    No full text
    We present results of an experiment performed in Lake Baikal at a depth of about 1 km. The photomultipliers of an underwater neutrino telescope under construction at this site have been illuminated by a distant laser. The experiment not only provided a useful cross-check of the time calibration of the detector, but also allowed to determine inherent optical parameters of the water in a way complementary to standard methods. In 1997, we have measured an absorption length of 22 m and an asymptotic attenuation length of 18 m. The effective scattering length was measured as 480 m. Using left angle cos #theta# right angle =0.95(0.90) for the average scattering angle, this corresponds to a geometrical scattering length of 24(48) m. (orig.)Available from TIB Hannover: RA 2999(99-018) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore