998 research outputs found

    At the cutting edge against cancer: A perspective on immunoproteasome and immune checkpoints modulation as a potential therapeutic intervention

    Get PDF
    Simple Summary:& nbsp;Immunoproteasome plays a key role in the generation of antigenic peptides. Immune checkpoints therapy is a front-line treatment of advanced/metastatic tumors, and to improve its efficacy, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is mandatory. The scope of this review is to offer a picture of the role of immunoproteasome in antigen presentation to fuel the hypothesis of novel therapeutic interventions based on the modulation of this proteolytic complex and immune checkpoints.Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers

    Scintillation proportional Xe counter with WLS fiber readout for low-energy X-rays

    Get PDF
    A gas Xe based scintillation proportional counter with cylindrical geometry and wavelength shifting (WLS) fiber readout for X-rays of energy 0.5 - 100 keV is proposed. With such a design large sizes and sensitive area of the counter with a fairly well uniformity is possible. The counter could be used for "dark matter" search and neutrino magnetic moment measurement and for detection of small amounts or traces of radioactive elements in substances or environment.Comment: LaTeX 4 pages, 3 figures in eps, Submitted to NI

    Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases

    Get PDF
    RNA cleavage by bacterial RNA polymerase (RNAP) has been implicated in transcriptional proofreading and reactivation of arrested transcription elongation complexes but its molecular mechanism is less understood than the mechanism of nucleotide addition, despite both reactions taking place in the same active site. RNAP from the radioresistant bacterium Deinococcus radiodurans is characterized by highly efficient intrinsic RNA cleavage in comparison with Escherichia coli RNAP. We find that the enhanced RNA cleavage activity largely derives from amino acid substitutions in the trigger loop (TL), a mobile element of the active site involved in various RNAP activities. The differences in RNA cleavage between these RNAPs disappear when the TL is deleted, or in the presence of GreA cleavage factors, which replace the TL in the active site. We propose that the TL substitutions modulate the RNA cleavage activity by altering the TL folding and its contacts with substrate RNA and that the resulting differences in transcriptional proofreading may play a role in bacterial stress adaptation.</p

    Detector array for the 7^7H nucleus multi-neutron decay study

    Full text link
    Setup fitting the requirements for the detailed study of the five-body decay of the 7H nucleus obtained as a result of the proton transfer from the 8He projectiles to the deuterium target nuclei is being built at the radioactive beam line of ACCULINNA-2 separator in the G.N. Flerov Laboratory of Nuclear Reactions. Described here is the assembly of 100 BC-404 plastic scintillators, intended for neutron detection, the annular Si detector telescope for the 3He recoils, and the detector array providing the ΔE\Delta E-EE-TOF registration of 3H nuclei emitted at the 7H decay. Results obtained by the Monte Carlo simulations made for the energy values and flight passes of all these particles are given together with the luminosity expected for the discussed experiments

    CCR5/CXCR3 antagonist TAK-779 prevents diffuse alveolar damage of the lung in the murine model of the acute respiratory distress syndrome

    Get PDF
    Introduction: The acute respiratory distress syndrome (ARDS), secondary to viral pneumonitis, is one of the main causes of high mortality in patients with COVID-19 (novel coronavirus disease 2019)—ongoing SARS-CoV-2 infection— reached more than 0.7 billion registered cases.Methods: Recently, we elaborated a non-surgical and reproducible method of the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice–a publicly available imitation of the ARDS caused by SARS-CoV-2. Our data read that two C–C chemokine receptor 5 (CCR5) ligands, macrophage inflammatory proteins (MIPs) MIP-1α/CCL3 and MIP-1β/CCL4, are upregulated in this DAD model up to three orders of magnitude compared to the background level.Results: Here, we showed that a nonpeptide compound TAK-779, an antagonist of CCR5/CXCR3, readily prevents DAD in the lung with a single injection of 2.5 mg/kg. Histological analysis revealed reduced peribronchial and perivascular mononuclear infiltration in the lung and mononuclear infiltration of the wall and lumen of the alveoli in the TAK-779-treated animals. Administration of TAK-779 decreased the 3–5-fold level of serum cytokines and chemokines in animals with DAD, including CCR5 ligands MIP-1α/β, MCP-1, and CCL5. Computed tomography revealed rapid recovery of the density and volume of the affected lung in TAK-779-treated animals.Discussion: Our pre-clinical data suggest that TAK-779 is more effective than the administration of dexamethasone or the anti-IL6R therapeutic antibody tocilizumab, which brings novel therapeutic modality to TAK-779 and other CCR5 inhibitors for the treatment of virus-induced hyperinflammation syndromes, including COVID-19

    Flux Modulations seen by the Muon Veto of the GERDA Experiment

    Full text link
    The GERDA experiment at LNGS of INFN is equipped with an active muon veto. The main part of the system is a water Cherenkov veto with 66~PMTs in the water tank surrounding the GERDA cryostat. The muon flux recorded by this veto shows a seasonal modulation. Two effects have been identified which are caused by secondary muons from the CNGS neutrino beam (2.2 %) and a temperature modulation of the atmosphere (1.4 %). A mean cosmic muon rate of Iμ0=(3.477±0.002stat±0.067sys)×104I^0_{\mu} = (3.477 \pm 0.002_{\textrm{stat}} \pm 0.067_{\textrm{sys}}) \times 10^{-4}/(s\cdotm2^2) was found in good agreement with other experiments at LNGS at a depth of 3500~meter water equivalent.Comment: 7 pages, 6 figure

    The background in the neutrinoless double beta decay experiment GERDA

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of 76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q-value of the decay, Q_bb. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q_bb. The main parameters needed for the neutrinoless double beta decay analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Q_bb with a background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at Q-bb is dominated by close sources, mainly due to 42K, 214Bi, 228Th, 60Co and alpha emitting isotopes from the 226Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known gamma peaks, the energy spectrum can be fitted in an energy range of 200 kev around Q_bb with a constant background. This gives a background index consistent with the full model and uncertainties of the same size

    Study of Proton and Deuteron Pickup Reactions 2H(10Be,3He)9Li an 2H(10Be,4He)8Li with 44 A MeV 10Be Radioactive Beam at ACCULINNA-2 Fragment Separator

    Full text link
    The proton and deuteron pickup reactions 2H(10Be,3He)9Li and\\ 2H(10Be,4He)8Li radioactive beam produced by the new fragment separator ACCULINNA-2 at FLNR, JINR\@. These measurements were initially motivated as test reactions intended for the elucidation of results obtained in the study of the extremely neutron-rich 7H and 6H systems created in the 2H(10Be,3He)9Li and 2H(10Be,4He)8Li reactions using the same setup. In the 2H(10Be,3He)9Li reaction the 9Li ground-state (3/23/2^-) and its first excited state (2.69~MeV, 1/21/2^-) were identified in the low-energy region of its excitation spectrum. The differential cross sections for the 9Li g.~s.) population were extracted at forward center-of-mass angles (3133^\circ-13^\circ) and compared with the FRESCO calculations. Spectroscopic factor of 1.7\sim 1.7, derived by a model for the 10Be=p+ = p +9Li(g.s.) clustering was found in accord with the experimental data. The energy spectrum of 8Li populated in the 2H(10Be,4He)8Li reaction shows the strong peak which corresponds to excitation of the second excited state of 8Li (2.25 MeV, 3+3^+). The fact that the ground and the first excited states of 8Li were not observed is fully consistent with Shell-Model calculations carried out for the 10Be g.\,s. and 8Li level structure applying momentum selection rules
    corecore