930 research outputs found

    Atmospheric forcing by ALADIN/MFSTEP and MFSTEP oriented tunings

    Get PDF
    International audienceALADIN/MFSTEP is a configuration of the numerical weather prediction (NWP) model ALADIN run in a dedicated real-time mode for the purposes of the MFSTEP Project. A special attention was paid to the quality of atmospheric fluxes used for the forcing of fine-scale oceanographic models. This paper describes the novelties applied in ALADIN/MFSTEP initiated by the MFSTEP demands, leading also to improvements in general weather forecasting

    Peroxisome biogenesis and selective degradation converge at Pex14p

    Get PDF
    We have analyzed the function of Hansenula polymorpha Pex14p in selective peroxisome degradation. Previously, we showed that Pex14p was involved in peroxisome biogenesis and functions in peroxisome matrix protein import. Evidence for the additional function of HpPex14p in selective peroxisome degradation (pexophagy) came from cells defective in HpPex14p synthesis. The suggestion that the absence of HpPex14p interfered with pexophagy was further analyzed by mutational analysis. These studies indicated that deletions at the C terminus of up to 124 amino acids of HpPex14p did not affect peroxisome degradation. Conversely, short deletions of the N terminus (31 and 64 amino acids, respectively) of the protein fully impaired pexophagy. Peroxisomes present in these cells remained intact for at least 6 h of incubation in the presence of excess glucose, conditions that led to the rapid turnover of the organelles in wild-type control cells. We conclude that the N terminus of HpPex14p contains essential information to control pexophagy in H. polymorpha and thus, that organelle development and turnover converge at Pex14p

    Experiential learning and simulation-based training in Norwegian police education: examining body-worn video as a tool to encourage reflection

    Get PDF
    This research article aims to add to current knowledge on reflection, body-worn video, and police education. It examines the potential effects of an intervention which employed subcams (a type of body-worn video) and replay interviews of video footage to enhance experiential learning during an operative training course for Norwegian police students in their final year of study. Our investigation examines evaluation surveys for differences between an intervention and comparison group on reflection and experiential learning outcomes. Findings indicate that students in the intervention group self-reported more general learning outcomes from the course concerning decision-making and communication and that they could identify their own mistakes to a greater degree. They also reported more learning outcomes as measured by the number of statements written about what they learned and would change to improve their performance on three different simulations. Moreover, the content of these statements reflected the intervention as they involved communication and decision-making to a greater degree than students in the comparison group. Implications for the further use of body-worn video to encourage reflection and enhance experiential learning in professional police training and development are discussed

    Fibroblast proliferation and migration in wound healing by phytochemicals: Evidence for a novel synergic outcome

    Get PDF
    Wound-healing is a dynamic skin reparative process that results in a sequence of events, including inflammation, proliferation, and migration of different cell types as fibroblasts. Fibroblasts play a crucial role in repairing processes, from the late inflammatory phase until the fully final epithelization of the injured tissue. Within this context, identifying tools able to implement cell proliferation and migration could improve tissue regeneration. Recently, plants species from all over the world are coming out as novel tools for therapeutic applications thanks to their phytochemicals, which have antioxidant properties and can promote wound healing. In this paper, we aimed at investigating antioxidant activity of waste extracts from different medicinal plants, endemic of the Mediterranean area, on fibroblast proliferation and wound healing. We determined the amount of total phenols and anti-oxidant activity by ABTS assay. We then evaluated the cytotoxicity of the compounds and the proliferative capabilities of fibroblasts by scratch assay. Our results showed that waste extracts retain antioxidant and regenerative properties, inducing tissue re-establishment after environmental stress exposure. Taken together, our findings suggest that waste material could be used in the future also in combinations to stimulate wound healing processes and antioxidant responses in damaged skin

    Isolating stem cells from skin: designing a novel highly efficient non-enzymatic approach

    Get PDF
    Stem cells are undifferentiated elements capable to acquire a specific cellular phenotype under the influence of specific stimuli, thus being involved in tissue integrity and maintenance. In the skin tissue self-renewal and wound healing after injury is a complex process, especially in adulthood, due to the aging process and the continuous exposure to damaging agents. The importance of stem cells in regenerative medicine is well known and defining or improving their isolation methods is therefore a primary and crucial step. In the present paper we present a novel method to isolate stem cells from human skin, including the involvement of a novel medium for the maintenance and expansion of in vitro cultures. The biopsies were mechanically digested and put in culture. The migrating cells were positive selected with magnetic cell sorting, characterized by flow-cytometry analysis, and viability detected by MTT assay. Cells exhibited a mesenchymal phenotype, as demonstrated by the positive acquirement of an osteogenic or adipogenic phenotype when cultured in specific conditioned media. Taken together our results disclose a novel method for culturing and expanding stem cells from skin and pave the way for future clinical applications in tissue regeneration

    A Pichia pastoris VPS15 homologue is required in selective peroxisome autophagy

    Get PDF
    Methylotrophic yeasts contain large peroxisomes during growth on methanol. Upon exposure to excess glucose or ethanol these organelles are selectively degraded by autophagy, Here we describe the cloning of a Pichia pastoris gene (PpVPS15) involved ill peroxisome degradation, which is homologous to Saccharomyces cerevisiae VPS15. In methanol-grown cells of a P. pastoris VPS15 deletion strain, the levels of peroxisomal marker enzymes remained high after addition of excess glucose or ethanol. Electron microscopic studies revealed that the organelles were not taken up by vacuoles, suggesting that PpVPS15 is required at an early stage in peroxisome degradation
    corecore