91 research outputs found

    magnetic nanoparticle guided blind focusing of the electric field for microwave hyperthermia

    Get PDF
    This paper deals with microwave hyperthermia, presenting a novel way to achieve the blind focusing on the tumor of the electric field radiated by an array of antennas. As in a recently proposed approach, the idea is to determine the antenna excitations by measuring the variation of the electric field arising from a localized variation of the electromagnetic contrast, without requiring any a priori knowledge of the geometry and of the electric properties of the tissues wherein the electromagnetic field propagates (thus, the adjective "blind"). The first novelty of the new approach is the use of magnetic nanoparticles as contrast agents, which, in addition to being biocompatible, are appealing thanks to the possibility of changing their magnetic contrast, in a fast, remote, and reversible way, by applying an external magnetic field. This allows a reconfigurable focusing through a continuous tuning of the antenna excitations, thereby enabling one to counteract the possible loss of focusing that could occur during the treatment. However, the magnetic nature of the induced contrast variation requires the development of ad hoc strategies for the synthesis of the excitations, which represent the other novelty of the new approach. Its effectiveness has been thoroughly investigated with an exhaustive 2-D numerical analysis, considering as case study that of breast cancer, and further assessed through 3-D realistic numerical simulations

    The potential of adjusting water bolus liquid properties for economic and precise MR thermometry guided radiofrequency hyperthermia

    Get PDF
    The potential of MR thermometry (MRT) fostered the development of MRI compatible radiofrequency (RF) hyperthermia devices. Such device integration creates major technological challenges and a crucial point for image quality is the water bolus (WB). The WB is located between the patient body and external sources to both couple electromagnetic energy and to cool the patient skin. However, the WB causes MRT errors and unnecessarily large field of view. In this work, we studied making the WB MRI transparent by an optimal concentration of compounds capable of modifying T2 * relaxation without an impact on the efficiency of RF heating. Three different T2 * reducing compounds were investigated, namely CuSO4, MnCl2, and Fe3 O4. First, electromagnetic properties and T2 * relaxation rates at 1.5 T were measured. Next, through multi-physics simulations, the predicted effect on the RF-power deposition pattern was evaluated and MRT precision was experimentally assessed. Our results identified 5 mM Fe3 O4 solution as optimal since it does not alter the RF-power level needed and improved MRT precision from 0.39â—¦ C to 0.09â—¦ C. MnCl2 showed a similar MRT improvement, but caused unacceptable RF-power losses. We conclude that adding Fe3 O4 has significant potential to improve RF hyperthermia treatment monitoring under MR guidance

    Field and Temperature Shaping for Microwave Hyperthermia: Recent Treatment Planning Tools to Enhance SAR-Based Procedures

    Get PDF
    The aim of the article is to provide a summary of the work carried out in the framework of a research project funded by the Italian Ministry of Research. The main goal of the activity was to introduce multiple tools for reliable, affordable, and high-performance microwave hyperthermia for cancer therapy. The proposed methodologies and approaches target microwave diagnostics, accurate in vivo electromagnetic parameters estimation, and improvement in treatment planning using a single device. This article provides an overview of the proposed and tested techniques and shows their complementarity and interconnection. To highlight the approach, we also present a novel combination of specific absorption rate optimization via convex programming with a temperature-based refinement method implemented to mitigate the effect of thermal boundary conditions on the final temperature map. To this purpose, numerical tests were carried out for both simple and anatomically detailed 3D scenarios for the head and neck region. These preliminary results show the potential of the combined technique and improvements in the temperature coverage of the tumor target with respect to the case wherein no refinement is adopted

    Temperature Effects on the Efficiency of Dickson Charge Pumps for Radio Frequency Energy Harvesting

    Get PDF
    An experimental study is carried out to assess the effect of temperature on the conversion efficiency of ultrahigh-frequency energy harvesters based on diode-capacitor Dickson charge pumps, frequently used in self-energizing circuits, such as in radio frequency identification tags or in wireless sensor nodes. Using off-the-shelf Schottky diodes often adopted for this application, it is shown that the harvester conversion efficiency at 868 MHz is temperature dependent due to the changing rectification ratio, namely the ratio between the forward and the reverse current flowing through the low barrier height Schottky diodes, which both show a positive derivative with T. The experimental study, supported by SPICE simulations, has shown that a temperature variation might be particularly harmful at the lowest incident power regimes, when even a minimal drop in the conversion efficiency might determine the out-of-servicing of a wirelessly energized circuit

    Design and Experimental Assessment of a 2D Microwave Imaging System for Brain Stroke Monitoring

    Get PDF
    The aim of this paper is to present and experimentally verify the first prototype of a microwave imaging system specifically designed and realized for the continuous monitoring of patients affected by brain stroke, immediately after its onset and diagnosis. The device is a 2D version of the 3D system, currently under construction, and consists of an array of 12 printed monopole antennas connected to a two-port vector network analyzer through a switching matrix so that each antenna can act as a transmitter or receiver, thereby allowing the acquisition of the entire multistatic multiview scattering matrix required for the imaging. The system has been experimentally tested on 2D phantoms with electric properties mimicking the brain. The presence and the evolution of the stroke have been reproduced by filling a proper cavity in the phantom with a liquid having the electric properties of blood. A differential approach has been adopted by acquiring the scattering matrix before and after the filling of the blood cavity. The so achieved differential dataset has been processed by means of a linear imaging algorithm in order to reconstruct the stroke location and dimension. Moreover, the effect of pre- and postprocessing operations on the measured data is investigated. A good agreement has been obtained between the reconstructions and the actual scenario. As a final remark, it is worth noting that the entire data acquisition and processing are sufficiently fast to allow a real-time monitoring

    ESHO benchmarks for computational modeling and optimization in hyperthermia therapy

    Get PDF
    Background: The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance. Materials and methods: The same computational methods deployed in HTP are also used for in silico studies. These are of great relevance for the development of new HT devices and treatment approaches. To aid this work, 3 D patient models have been recently developed and made available for the HT community. Unfortunately, there is no consensus regarding tissue properties, simulation settings, and benchmark applicators, which significantly influence the clinical relevance of computational outcomes. Results and discussion: Herein, we propose a comprehensive set of applicator benchmarks, efficacy and safety optimization algorithms, simulation settings and clinical parameters, to establish benchmarks for method comparison and code verification, to provide guidance, and in view of the 2021 ESHO Grand Challenge (Details on the ESHO grand challenge on HTP will be provided at https://www.esho.info/). Conclusion: We aim to establish guidelines to promote standardization within the hyperthermia community such that novel approaches can quickly prove their benefit as quickly as possible in clinically relevant simulation scenarios. This paper is primarily focused on radiofrequency and microwave hyperthermia but, since 3 D simulation studies on heating with ultrasound are now a reality, guidance as well as a benchmark for ultrasound-based hyperthermia are also included

    Assessing Detection Limits in Magnetic Nanoparticle Enhanced Microwave Imaging

    Get PDF
    Magnetic nanoparticles-aided microwave imaging is an emerging modality for the diagnosis of early stage tumors. It exploits the possibility of modulating the response at microwaves of magnetic nanoparticles, employed as contrast agent selectively accumulated into the tumor. In this paper, we describe the results of an experimental study aimed at establishing the actual detection limits of the approach, namely the minimum amount of magnetic nanoparticles to be delivered for a reliable imaging. The assessment is carried out on breast phantoms made of ex-vivo minced pig tissues and using commercially available magnetic nanoparticles. The results show that it is possible to detect amounts of magnetic nanoparticles between 2 and 7 mg, dispersed in a volume of about one cubic centimeter, depending on the breast type. While such quantities are already consistent with those currently reachable via active selective targeting, an in-depth analysis of the results allows to identify strategies to further lower the detection limits up to four times, by refining the measurement set-up and setting the amplitude of the polarizing magnetic field modulating the nanoparticle response to a suitable value

    Standardization of patient modeling in hyperthermia simulation studies: introducing the Erasmus Virtual Patient Repository

    Get PDF
    Purpose: Thermal dose-effect relations have demonstrated that clinical effectiveness of hyperthermia would benefit from more controlled heating of the tumor. Hyperthermia treatment planning (HTP) is a potent tool to study strategies enabling target conformal heating, but its accuracy is affected by patient modeling approximations. Homogeneous phantoms models are being used that do not match the body shape of patients in treatment position and often have unrealistic target volumes. As a consequence, simulation accuracy is affected, and performance comparisons are difficult. The aim of this study is to provide the first step toward standardization of HTP simulation studies in terms of patient modeling by introducing the Erasmus Virtual Patient Repository (EVPR): a virtual patient model database.Methods: Four patients with a tumor in the head and neck or the pelvis region were selected, and corresponding models were created using a clinical segmentation procedure. Using the Erasmus University Medical Center standard procedure, HTP was applied to these models and compared to HTP for commonly used surrogate models.Results: Although this study was aimed at presenting the EVPR database, our study illustrates that there is a non-negligible difference in the predicted SAR patterns between patient models and homogeneous phantom-based surrogate models. We further demonstrate the dif

    Importance of Echocardiography and Clinical "Red Flags" in Guiding Genetic Screening for Fabry Disease

    Get PDF
    Aim of this study was to evaluate, in a metropolitan area not already explored, the prevalence of Anderson-Fabry disease, by genetic screening, in patients with echocardiographic evidence of left ventricular hypertrophy (LVH) of unknown origin and "clinical red flags"

    Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom

    Get PDF
    Clinical outcome of hyperthermia depends on the achieved target temperature, therefore target conformal heating is essential. Currently, invasive temperature probe measurements are the gold standard for temperature monitoring, however, they only provide limited sparse data. In contrast, magnetic resonance thermometry (MRT) provides unique capabilities to non-invasively measure the 3D-temperature. This study investigates MRT accuracy for MR-hyperthermia hybrid systems located at five European institutions while heating a centric or eccentric target in anthropomorphic phantoms with pelvic and spine structures. Scatter plots, root mean square error (RMSE) and Bland–Altman analysis were used to quantify accuracy of MRT compared to high resistance thermistor probe measurements. For all institutions, a linear relation between MRT and thermistor probes measurements was found with R2 (mean ± standard deviation) of 0.97 ± 0.03 and 0.97 ± 0.02, respectively for centric and eccentric heating targets. The RMSE was found to be 0.52 ± 0.31 °C and 0.30 ± 0.20 °C, respectively. The Bland-Altman evaluation showed a mean difference of 0.46 ± 0.20 °C and 0.13 ± 0.08 °C, respectively. This first multi-institutional evaluation of MR-hyperthermia hybrid systems indicates comparable device performance and good agreement between MRT and thermistor probes measurements. This forms the basis to standardize treatments in multi-institution studies of MR-guided hyperthermia and to elucidate thermal dose-effect relations
    • …
    corecore