229 research outputs found

    First Plasma Operation of the Enhanced JET Vertical Stabilisation System First Plasma Operation of the Enhanced JET Vertical Stabilisation System

    Get PDF
    AbstrAct A project dedicated to the enhancement of the JET Vertical Stabilization system was launched in 2006, including an upgrade of the Power Supply of the Radial Field Amplifier, of hardware and software of the VS control system. The main aim was to double the JET capability in stabilising high current plasmas when subject to perturbations, in particular large Edge Localised Modes. We present here the results of first plasma operation with the new Enhanced Radial Field Amplifier and its data acquisition and control system, focussing on the benefits of an approach based on phased commissioning, modelling and offline algorithm validation

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Coupling Plasmas and 3D Passive Structures in the JET Tokamak

    No full text
    The impact of the 3D effects on the dynamic response of the plasma in the JET tokamak is assessed on the time scale of interest for plasma magnetic control and stabilization. These effect are due to the limbs of the magnetic circuit and to the eddy currents in the 3D metallic structures. The plasma behaviour is taken into account by a specific matrix of modified inductances interacting with the remaining part of the system via a virtual coupling surfac

    Using Magnetic Diagnostics to Extrapolate Operational Limits in Elongated Tokamak Plasmas

    No full text
    Tokamaks are the most promising approach for nuclear fusion on earth. They are toroidal machines where the plasma is heated in a ring-shaped vessel and kept away from the vessel by applied magnetic fields. To achieve high performance in tokamaks, plasmas with elongated poloidal cross-section are needed. Such elongated plasmas are vertically unstable, hence position control on a fast time scale is clearly an essential feature of all machines. In this context the Plasma Control Upgrade (PCU) project was aimed at increasing the capabilities of the Vertical Stabilization (VS) of the JET tokamak. This paper introduces the new JET VS system and focuses on how the flexibility of this real-time system has been exploited to enlarge its operational limits in terms of maximum controllable disturbance. Moreover, the experiments recently carried out at JET are presented. © 2010 IEEE
    • …
    corecore