3 research outputs found

    Functional and Placental Expression Analysis of the Human NRF3 Transcription Factor

    No full text
    International audienceMembers of the Maf protooncogene and cap'n' collar families of basic-leucine zipper transcription factors play important roles in development, differentiation , oncogenesis, and stress signaling. In this study, we performed an in vivo protein-protein interaction screen to search for novel partners of the small Maf proteins. Using full-length human MAFG protein as bait, we identified the human basic-leucine zipper protein NRF3 [NF-E2 (nuclear factor erythroid 2)-related factor 3] as an interaction partner. Transfection studies confirmed that NRF3 is able to dimerize with MAFG. The resulting NRF3/ MAFG heterodimer recognizes nuclear factor-erythroid 2/Maf recognition element-type DNA-binding motifs. Functional analysis revealed the presence of a strong transcriptional activation domain in the center region of the NRF3 protein. We found that NRF3 transcripts are present in placen-tal chorionic villi from at least week 12 of gestation on through term. In particular, NRF3 is highly expressed in primary placental cytotrophoblasts, but not in placental fibroblasts. The human choriocar-cinoma cell lines BeWo and JAR, derived from tro-phoblastic tumors of the placenta, also strongly express NRF3 transcripts. We generated a NRF3-specific antiserum and identified NRF3 protein in placental choriocarcinoma cells. Furthermore, we showed that NRF3 transcript and protein levels are induced by TNF-in JAR cells. Our functional studies suggest that human NRF3 is a potent transcrip-tional activator. Finally, our expression and induction analyses hint at a possible role of Nrf3 in placental gene expression and development. (Mo-lecular Endocrinology 19: 125-137, 2005
    corecore