138 research outputs found

    First results of the Standalone Antenna Array of the CODALEMA Radio Detection Experiment

    Full text link
    CODALEMA is one of the pioneer experiments dedicated to the recent field of cosmic ray radio detection. It is located at the radio observatory of Nancay (France). The detector setup combined until recently a ground particle detector and an array of active dipole antennas covering a total area of 0.25 km^2. The experiment is now going through a major upgrade with the deployment around the existing apparatus of a Standalone Antenna Array, which consists of 60 standalone new generation radio-detection stations and which will cover an area of 1.5 km^2 (33 stations deployed over the spring of 2011 and 27 stations to be deployed in late 2011). This new setup is intended to tackle the remaining unknowns of extensive air shower radio detection so as to make this technique a reliable and mature tool for Ultra High Energy Cosmic Ray (UHECR) physics. The latest results from the original CODALEMA array are discussed together with the first results of the Standalone Antenna Array.Comment: International Cosmic Ray Conference, Beijing 2011, 4 pages, 5 figure

    Radio Detection of Cosmic Ray Air Showers with Codalema

    Full text link
    Studies of the radio detection of Extensive Air Showers is the goal of the demonstrative experiment CODALEMA. Previous analysis have demonstrated that detection around 5.10165.10^{16} eV was achieved with this set-up. New results allow for the first time to study the topology of the electric field associated to EAS events on a event by event basis.Comment: 6 pages, 4 figures Proceedings of the Rencontres de Moriond, Very High Energy Phenomena in the Universe, La Thuile, Italy (March 12-19, 2005

    Radio Detection of Extensive Air Showers with CODALEMA

    Full text link
    The principle and performances of the CODALEMA experimental device, set up to study the possibility of high energy cosmic rays radio detection, are presented. Radio transient signals associated to cosmic rays have been identified, for which arrival directions and shower's electric field topologies have been extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.10^16 eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of UHECR at a larger scale.Comment: 4 pages and 3 figures. To appear in the Proceedings of the 29th ICRC, Pune (2005

    Radio Detection of Cosmic Ray Extensive Air Showers: present status of the CODALEMA experiment

    Get PDF
    Data acquisition and analysis for the CODALEMA experiment, in operation for more than one year, has provided improved knowledge of the characteristics of this new device. At the same time, an important effort has been made to develop processing techniques for extracting transient signals from data containing interference.Comment: september 200

    Radiodetection of Cosmic Ray Extensive Air Showers

    Get PDF
    We present the characteristics and performance of a demonstration experiment devoted to the observation of ultra high- energy cosmic ray extensive air showers using a radiodetection technique. In a first step, one antenna narrowed band filtered acting as trigger, with a 4 σ\sigma threshold above sky background-level, was used to tag any radio transient in coincidence on the antenna array. Recently, the addition of 4 particle detectors has allowed us to observe cosmic ray events in coincidence with antennas

    CODALEMA: a cosmic ray air shower radio detection experiment

    Get PDF
    International audienceThe CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016^{16}eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale

    Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector

    Full text link
    Cosmic rays extensive air showers (EAS) are associated with transient radio emission, which could provide an efficient new detection method of high energy cosmic rays, combining a calorimetric measurement with a high duty cycle. The CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is investigating this phenomenon in the 10^17 eV region. One challenging point is the understanding of the radio emission mechanism. A first observation indicating a linear relation between the electric field produced and the cross product of the shower axis with the geomagnetic field direction has been presented (B. Revenu, this conference). We will present here other strong evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo
    corecore