166 research outputs found

    Unlocking thermal comfort in transitional spaces: A field study in three Italian shopping centres

    Get PDF
    Shopping centres are commonly laid out as small individual stores connected by transitional spaces. Setpoint temperatures used to control transitional spaces are normally the same as in traditional indoor environments despite substantial differences in use, time of permanence and users' needs. Currently, there are no comfort guidelines for transitional spaces and the literature lacks relevant studies on the topic. There is an untapped potential for energy savings and improved indoor environmental quality. The main objective of this work is to evaluate the suitability of Fanger's comfort model and adaptive comfort model for transitional spaces. We assessed users' thermal perception and potential impacting factors in three Italian shopping centres. 724 customers were interviewed on their thermal comfort, thermal sensation, thermal preference, and clothing level while experiencing the transitional space. In addition, the thermal environment at the interview locations (dry-bulb temperature, globe temperature, relative humidity, and air speed at different levels) and the outdoor temperature were monitored. The study demonstrated that Fanger's model and the adaptive comfort model are not suitable for transitional spaces. Customers were inclined to adapt to a much wider range of indoor environmental conditions. An operative temperature of up to 27.5 °C was still deemed comfortable by more than 80% of the customers. These results unlock a large potential for energy savings and pave the way for passive solutions such as natural ventilation

    AEROBIC AND ANAEROBIC METABOLISM DURING LOCOMOTION WITH TWO DIFFERENT WHEELCHAIR TYPES

    Get PDF
    Wheelchair design is extremely important in order to improve efficiency of locomotion and reduce physical stress in subjects whose muscular and cardiopulmonary fitness are impaired. Purpose of this study was to evaluate the effect of different wheelchair design on the aerobic and anaerobic metabolism during locomotion at different speeds in paraplegic subjects. The experiments were carried out on a group of 5 male paraplegic subjects (25 ±3 years; body weight 65±7kg) during locomotion on a roller ergometer (Sopur, Ergotronic mod.) at 3-4 different speeds from 2 to 9 km/h. At each speed oxygen consumption and heart rate were determined after at least 6 min of exercise. Lactic acid (LA) venous blood concentration was evaluated before and at the 5th min of recovery and lactate production was calculated. The oxygen equivalent of LA was assumed to be 3.15ml O2 per kg body weight for an increase of blood LA of 1 mmol/L. For each subject the test was repeated using two different types of daily use active wheelchairs: type A., foldable, 13.95kg; type B, demountable, 13.35kg. The main difference in size was in the horizontal location of the wheel axle, in seat height and in handrim diameter. Results indicate that: a) oxygen consumption increased linearly with speed being 2050±350ml/min and 1780±270ml/min at 9km/h for wheelchair type A and B, respectively; b)lactic acid concentrations were significantly higher, at a given speed, while using wheelchair type A than B (at 9km/h; 7.4±1.5 mmol/l and 6.0±1.6 mmol/l, respectively),c) the total energy required , aerobic and anaerobic, increased linearly with speed and was 15-20% higher with wheelchair type A than B at all speeds; d) the energy cost of locomotion at a given speed was in the 15-25% range higher for wheelchair A than B; e) at corresponding oxygen uptake, heart rate and pulmonary ventilation were not different with the two wheelchair types. The main results of this study concern the large difference existing in the energy cost of locomotion and in the lactate production in the same subject when two different wheelchairs, even if apparently similar are used. In particular the much higher lactate production suggests that wheelchair design affects the limb and trunk movements in such a way that the metabolism of some muscle group requires a greater participation of anaerobic mechanism of energy supply, this leading to early onset of muscular fatigue. Further studies, in particular the combined biomechanical analysis of user and wheelchair during locomotion are required to increase the optimum fitting of wheelchair –user interface

    Cyclic shear tests on RC precast beam-to-column connections retrofitted with a three-hinged steel device

    Get PDF
    Recent European earthquakes demonstrated that the seismic response of RC precast structures can be significantly influenced by the connection systems. Moreover, during past seismic events, many failures of the beam-to-column connections occurred due to their inadequate strength under seismic loads. The seismic safety of these connections has a crucial role in the overall seismic capacity of existing precast structures. A new connection system is employed as a retrofitting solution for a damaged beam-to-column connection and its cyclic shear performance is investigated by means of two cyclic shear tests on two different configurations. In both the experimental tests, the results demonstrate an efficient behavior of the retrofitted connections under horizontal cyclic loads. The comparison between the performance of the investigated connection and the response of a typical beam-to-column dowel connection allows to discuss the main critical features of the dowel connection system

    Extrados Strengthening of Single-Leaf Vaults Against Seismic Actions

    Get PDF
    Single-leaf vaults are acknowledged among the most vulnerable components of historical masonry constructions with respect to earthquake loads, particularly when featuring large span to thickness ratios, as in the case of single leaf covering the main nave of churches. These elements often require structural strengthening against seismic actions. In this paper, two different extradostechniques are tested: lightweight plywood restraining elements and FRP laminates embedded in a lime mortar layer. The techniques are tested on single leaf vaults having a very unfavorable span to thickness ratio. A previous study on less slender vaults, showed that lightweight plywood centerings, applying passive confinement to the vault extrados, inhibit the onset of the typical four-hinges failure mechanism. This lightweight, dry solution can be easily prefabricated, transferred and assembled at the construction site. The technique is reversible and fully compliant with the major preservation principles. FRP is also effective against the onset of the failure mechanism but entails larger deformations of the retrofitted vault, which may be detrimental in the case of possible decorations. The solution requires special man labor to ensure correct smoothening and cleaning of the vault extrados and to trigger effective bond between the mortar and the vault extrados. Both solutions are shown to enable small relative displacements of the vault springing, which may follow the deformation of possible internal ties. The effectiveness of these retrofit techniques was comparatively verified through experimental tests on single-leaf barrel vault stripes at 1:2 scale subjected to cyclic distributed unsymmetrical loads and through comparison with the seismic response of a reference unreinforced single-leaf vault

    Brain angioarchitecture and intussusceptive microvascular growth in a murine model of Krabbe disease

    Get PDF
    Abstract Defects of the angiogenic process occur in the brain of twitcher mouse, an authentic model of human Krabbe disease caused by genetic deficiency of lysosomal b-galactosylceramidase (GALC), leading to lethal neurological dysfunctions and accumulation of neurotoxic psychosine in the central nervous system. Here, quantitative computational analysis was used to explore the alterations of brain angioarchitecture in twitcher mice. To this aim, customized ImageJ routines were used to assess calibers, amounts, lengths and spatial dispersion of CD31? vessels in 3D volumes from the postnatal frontal cortex of twitcher animals. The results showed a decrease in CD31 immunoreactivity in twitcher brain with a marked reduction in total vessel lengths coupled with increased vessel fragmentation. No significant changes were instead observed for the spatial dispersion of brain vessels throughout volumes or in vascular calibers. Notably, no CD31? vessel changes were detected in twitcher kidneys in which psychosine accumulates at very low levels, thus confirming the specificity of the effect. Microvascular corrosion casting followed by scanning electron microscopy morphometry confirmed the presence of significant alterations of the functional angioarchitecture of the brain cortex of twitcher mice with reduction in microvascular density, vascular branch remodeling and intussusceptive angiogenesis. Intussusceptive microvascular growth, con- firmed by histological analysis, was paralleled by alterations of the expression of intussusception-related genes in twitcher brain. Our data support the hypothesis that a marked decrease in vascular development concurs to the onset of neuropathological lesions in twitcher brain and suggest that neuroinflammation-driven intussusceptive responses may represent an attempt to compensate impaired sprouting angiogenesis

    Generation of Biologically Active Angiostatin Kringle 1–3 by Activated Human Neutrophils

    Get PDF
    AbstractThe contribution of polymorphonuclear neutrophils (PMN) to host defense and natural immunity extends well beyond their traditional role as professional phagocytes. In this study, we demonstrate that upon stimulation with proinflammatory stimuli, human PMN release enzymatic activities that, in vitro, generate bioactive angiostatin fragments from purified plasminogen. We also provide evidence that these angiostatin-like fragments, comprising kringle domain 1 to kringle domain 3 (kringle 1–3) of plasminogen, are generated as a byproduct of the selective proteolytic activity of neutrophil-secreted elastase. Remarkably, affinity-purified angiostatin kringle 1–3 fragments generated by neutrophils inhibited basic fibroblast growth factor plus vascular endothelial growth factor-induced endothelial cell proliferation in vitro, and both vascular endothelial growth factor-induced angiogenesis in the matrigel plug assay and fibroblast growth factor-induced angiogenesis in the chick embryo chorioallantoic membrane assay, in vivo. These results represent the first demonstration that biologically active angiostatin-like fragments can be generated by inflammatory human neutrophils. Because angiostatin is a potent inhibitor of angiogenesis, tumor growth, and metastasis, the data suggest that activated PMN not only act as potent effectors of inflammation, but might also play a critical role in the inhibition of angiogenesis in inflammatory diseases and tumors, by generation of a potent anti-angiogenic molecule

    A variational approach to strongly damped wave equations

    Full text link
    We discuss a Hilbert space method that allows to prove analytical well-posedness of a class of linear strongly damped wave equations. The main technical tool is a perturbation lemma for sesquilinear forms, which seems to be new. In most common linear cases we can furthermore apply a recent result due to Crouzeix--Haase, thus extending several known results and obtaining optimal analyticity angle.Comment: This is an extended version of an article appeared in \emph{Functional Analysis and Evolution Equations -- The G\"unter Lumer Volume}, edited by H. Amann et al., Birkh\"auser, Basel, 2008. In the latest submission to arXiv only some typos have been fixe

    The COOH-Terminal Peptide of Platelet Factor-4 Variant (CXCL4L1/PF-4var47-70) Strongly Inhibits Angiogenesis and Suppresses B16 Melanoma Growth In vivo.

    Get PDF
    Chemokines influence tumor growth directly or indirectly via both angiogenesis and tumor-leukocyte interactions. Platelet factor-4 (CXCL4/PF-4), which is released from alpha-granules of activated platelets, is the first described angiostatic chemokine. Recently, it was found that the variant of CXCL4/PF-4 (CXCL4L1/PF-4var) could exert a more pronounced angiostatic and antitumoral effect than CXCL4/PF-4. However, the molecular mechanisms of the angiostatic activities of the PF-4 forms remain partially elusive. Here, we studied the biological properties of the chemically synthesized COOH-terminal peptides of CXCL4/PF-4 (CXCL4/PF-4(47-70)) and CXCL4L1/PF-4var (CXCL4L1/PF-4var(47-70)). Both PF-4 peptides lacked monocyte and lymphocyte chemotactic activity but equally well inhibited (25 nmol/L) endothelial cell motility and proliferation in the presence of a single stimulus (i.e., exogenous recombinant fibroblast growth factor-2). In contrast, when assayed in more complex angiogenesis test systems characterized by the presence of multiple mediators, including in vitro wound-healing (2.5 nmol/L versus 12.5 nmol/L), Matrigel (60 nmol/L versus 300 nmol/L), and chorioallantoic membrane assays, CXCL4L1/PF-4var(47-70) was found to be significantly (5-fold) more angiostatic than CXCL4/PF-4(47-70). In addition, low (7 mug total) doses of intratumoral CXCL4L1/PF-4var(47-70) inhibited B16 melanoma growth in mice more extensively than CXCL4/PF-4(47-70). This antitumoral activity was predominantly mediated through inhibition of angiogenesis (without affecting blood vessel stability) and induction of apoptosis, as evidenced by immunohistochemical and fluorescent staining of B16 tumor tissue. In conclusion, CXCL4L1/PF-4var(47-70) is a potent antitumoral and antiangiogenic peptide. These results may represent the basis for the design of CXCL4L1/PF-4var COOH-terminal-derived peptidomimetic anticancer drugs. Mol Cancer Res; 8(3); 322-34
    • …
    corecore