8 research outputs found

    Operational experience and commissioning of the Belle II vertex detector

    Get PDF
    The construction of the new accelerator at the Super Flavor Factory in Tsukuba, Japan, has been finalized and the commissioning of its detector (Belle II) has started. This new e+e machine (SuperKEKB) will deliver an instantaneous luminosity of 8 1035 cm2s1, which is 40 times higher than the world record set by KEKB. In order to be able to fully exploit the increased number of events and provide high precision measurements of the decay vertex of the B meson systems in such a harsh environment, the Belle II detector will include a new 6 layer silicon vertex detector. Close to the beam pipe, 2 pixel and 4 double-sided strip detector layers will be installed. During its first data taking period in 2018, the inner volume of the Belle II detector was only partially equipped with the final vertex detector technologies. The remaining volume was covered with dedicated radiation monitors, collectively called BEAST II, in order to investigate the particle and synchrotron radiation backgrounds near the interaction point. In this note, the milestones of the commissioning of the Belle II vertex detector and BEAST II are reviewed and the detector performance and selected background measurements will be presented

    Status of the BELLE II Pixel Detector

    Get PDF
    The Belle II experiment at the super KEK B-factory (SuperKEKB) in Tsukuba, Japan, has been collecting e+ee^+e^− collision data since March 2019. Operating at a record-breaking luminosity of up to 4.7×1034cm2s14.7×10^{34} cm^{−2}s^{−1}, data corresponding to 424fb1424 fb^{−1} has since been recorded. The Belle II VerteX Detector (VXD) is central to the Belle II detector and its physics program and plays a crucial role in reconstructing precise primary and decay vertices. It consists of the outer 4-layer Silicon Vertex Detector (SVD) using double sided silicon strips and the inner two-layer PiXel Detector (PXD) based on the Depleted P-channel Field Effect Transistor (DePFET) technology. The PXD DePFET structure combines signal generation and amplification within pixels with a minimum pitch of (50×55)μm2(50×55) μm^2. A high gain and a high signal-to-noise ratio allow thinning the pixels to 75μm75 μm while retaining a high pixel hit efficiency of about 9999%. As a consequence, also the material budget of the full detector is kept low at 0.21≈0.21%XX0\frac{X}{X_0} per layer in the acceptance region. This also includes contributions from the control, Analog-to-Digital Converter (ADC), and data processing Application Specific Integrated Circuits (ASICs) as well as from cooling and support structures. This article will present the experience gained from four years of operating PXD; the first full scale detector employing the DePFET technology in High Energy Physics. Overall, the PXD has met the expectations. Operating in the intense SuperKEKB environment poses many challenges that will also be discussed. The current PXD system remains incomplete with only 20 out of 40 modules having been installed. A full replacement has been constructed and is currently in its final testing stage before it will be installed into Belle II during the ongoing long shutdown that will last throughout 2023

    Operational experience of the Belle II pixel detector

    No full text
    Belle-II DEPFET and PXD Collaboration: et al.The Belle II experiment at the SuperKEKB accelerator has started its physics data taking with the full detector setup in March 2019. It aims to collect 40 times more e+ e- collision data compared with its predecessor Belle experiment. The Belle II pixel detector (PXD) is based on the Depleted P-channel Field Effect Transistor (DEPFET) technology. The PXD plays an important role in the tracking and vertexing of the Belle II detector. Its two layers are arranged at radii of 14 mm and 22 mm around the interaction point. The sensors are thinned down to 75 m to minimize multiple scattering, and each module has interconnects and ASICs integrated on the sensor with silicon frames for mechanical support. PXD showed good performance during data taking. It also faces several operational challenges due to the high background level from the SuperKEKB accelerator, such as the damage from beam loss events, the drift in the HV working point due to radiation effect, and the impact of the high background.This work is supported by MEXT, WPI, and JSPS (Japan); MSMT, GAUK 404316 (Czech Republic), MSCA-RISE project JENNIFER-2 (EU grant 822070); Federal Ministry of Education and Research (BMBF, Germany); CIDEGENT/2018/020 of Generalitat Valenciana (Spain); National Natural Science Foundation of China (No. 11435013); and research grants S-1440-0321, S-0256-1438, and S-0280-1439 (University of Tabuk, KSA, Saudi Arabia ).Peer reviewe

    DEPFET pixel detector in the Belle II experiment

    No full text
    The Belle II experiment will run with a reduced beam asymmetry and a factor of 40 higher instantaneous luminosity compared to the Belle experiment. To cope with this and to be able to perform high precision vertex measurements for charge conjugation parity violating processes, a pixel detector based on DEPFET technology will be installed in the center of Belle II. Its basic properties and the DAQ chain are presented in this article

    Commissioning and performance of the Belle II pixel detector

    No full text
    The Belle II experiment at the SuperKEKB energy-asymmetric e+ee^+ e^− collider has completed a series of substantial upgrades and started collecting data in 2019. The experiment is expected to accumulate a data set of 50 ab1^{−1} to explore new physics beyond the Standard Model at the intensity frontier. The pixel detector (PXD) of Belle II plays a key role in vertex determination. It has been developed using the DEpleted P-channel Field Effect Transistor (DEPFET) technology, which combines low power consumption in the active pixel area and low intrinsic noise with a very small material budget. In this paper, commissioning and performance of the PXD measured with first collision data are presented

    Belle II pixel detector: Performance of final DEPFET modules

    No full text
    A DEpleted P-channel Field Effect Transistor (DEPFET) based pixel detector was developed for the Belle II VerteX Detector (VXD). It is designed to achieve a good impact parameter resolution better than 15μm at the very high luminosity conditions of this experiment. In the first half of 2018 four final production modules have been deployed in the commissioning run of the detector and their performance is discussed

    Operational experience of the Belle II pixel detector

    No full text
    The Belle II experiment at the SuperKEKB accelerator has started its physics data taking with the full detector setup in March 2019. It aims to collect 40 times more e+e− collision data compared with its predecessor Belle experiment. The Belle II pixel detector (PXD) is based on the Depleted P-channel Field Effect Transistor (DEPFET) technology. The PXD plays an important role in the tracking and vertexing of the Belle II detector. Its two layers are arranged at radii of 14 mm and 22 mm around the interaction point. The sensors are thinned down to 75 μm to minimize multiple scattering, and each module has interconnects and ASICs integrated on the sensor with silicon frames for mechanical support. PXD showed good performance during data taking. It also faces several operational challenges due to the high background level from the SuperKEKB accelerator, such as the damage from beam loss events, the drift in the HV working point due to radiation effect, and the impact of the high background

    The Belle II vertex detector integration

    No full text
    The Belle II experiment comes with a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric collider with energies tuned to (4 ) resonance sqrt() = 10.588 GeV. The accelerator has successfully completed the first phase of commissioning in 2016 and the first electron\u2013positron collisions in Belle II took place in April 2018. Belle II features a newly designed silicon vertex detector based on DEPFET pixel and double-sided strip layers. Currently, a subset of the vertex detector is installed (Phase 2 of the experiment). Installation of the full detector (Phase 3) will be completed by the end of 2018. This paper describes the Phase 2 arrangement of the Belle II silicon vertex detector, with focus on the interconnection of detectors and their integration with the software framework of Belle II. Alignment issues are discussed based on detector simulations and first acquired data
    corecore