33 research outputs found

    Analysis of wind data for airport runway design

    Get PDF
    Purpose: To provide a methodology, and examples of application, for analyzing wind data for the correct orientation of airport runways. Design/methodology: More than 90000 observed wind data have been analyzed for each one of the three airports used as case studies. Both observed and estimated gusts have been considered. Findings: If only observed data are considered, each single runway of the three airports used as case studies is correctly oriented. When estimated gusts are considered, the FAA requirements are not satisfied by a single runway in some airports (which anyway satisfy such requirements by using more runways). Practical implications: The correct orientation of runways minimizes the crosswind components, then increases the safety of the airports. Originality/value: The paper provides a methodology to evaluate the orientation of existing runways and to design new runways. Such methodology is based on the analysis wind data, considering both observed values and estimated gusts.Peer Reviewe

    Climatic Analysis of Wind Patterns to Enhance Sailors’ Performance during Races

    Get PDF
    he impact of environmental and meteorological conditions when dealing with sport performance has been demonstrated by several studies carried out in recent years. Among the meteorological variables with the greatest effect are temperature, humidity, precipitation, and wind direction and speed. This research focused on analyzing and forecasting the wind patterns occurring in Enoshima Bay (Japan). In particular, the objective of this study was to provide support and guidance to sailors in the preparation of the race strategy, thanks to an in-depth knowledge of these meteorological variables. To do this, an innovative method was used. First, through the combined use of Weather Research and Forecasting (WRF) and CALMET models, a simulation was performed, in order to reconstruct an offshore database of a recent 10-year period (2009–2018) over the race area, inside the bay. Subsequently, the verification of hind-cast was performed: the wind data measured at sea were compared with the data extracted from the CALMET database to verify the validity of the model. The verification was performed through three statistical indexes: BIAS, MAE, and PCC. The analysis showed mixed results, depending on the examined pattern, but made it possible to identify the days that best simulated the reality. Then, the wind data from the selected days were summarized and collected in plots, tables, and maps to design a decision support service (DSS), in order to provide athletes with the necessary information in a simple and effective way. In conclusion, we state that the application of this method extends beyond the sports field. Indeed, the study of wind patterns may be necessary in the design of actions to contrast and adapt to climate change, particularly in coastal areas

    Improving the deterministic skill of air quality ensembles

    Get PDF
    <p><strong>Abstract.</strong> Forecasts from chemical weather models are subject to uncertainties in the input data (e.g. emission inventory, initial and boundary conditions) as well as the model itself (e.g. physical parameterization, chemical mechanism). Multi-model ensemble forecasts can improve the forecast skill provided that certain mathematical conditions are fulfilled. We demonstrate through an intercomparison of two dissimilar air quality ensembles that unconditional raw forecast averaging, although generally successful, is far from optimum. One way to achieve an optimum ensemble is also presented. The basic idea is to either add optimum weights to members or constrain the ensemble to those members that meet certain conditions in time or frequency domain. The methods are evaluated against ground level observations collected from the EMEP and Airbase databases.<br><br> The two ensembles were created for the first and second phase of the Air Quality Model Evaluation International Initiative (AQMEII). Verification statistics shows that the deterministic models simulate better O<sub>3</sub> than NO<sub>2</sub> and PM<sub>10</sub>, linked to different levels of complexity in the represented processes. The ensemble mean achieves higher skill compared to each station's best deterministic model at 39 %–63 % of the sites. The skill gained from the favourable ensemble averaging has at least double the forecast skill compared to using the full ensemble. The method proved robust for the 3-monthly examined time-series if the training phase comprises 60 days. Further development of the method is discussed in the conclusion.</p&gt

    Modeled deposition of nitrogen and sulfur in Europe estimated by 14 air quality model systems: evaluation, effects of changes in emissions and implications for habitat protection

    Full text link
    The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100  ×  100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat

    Analysis of wind data for airport runway design

    No full text
    Purpose: To provide a methodology, and examples of application, for analyzing wind data for the correct orientation of airport runways. Design/methodology: More than 90000 observed wind data have been analyzed for each one of the three airports used as case studies. Both observed and estimated gusts have been considered. Findings: If only observed data are considered, each single runway of the three airports used as case studies is correctly oriented. When estimated gusts are considered, the FAA requirements are not satisfied by a single runway in some airports (which anyway satisfy such requirements by using more runways). Practical implications: The correct orientation of runways minimizes the crosswind components, then increases the safety of the airports. Originality/value: The paper provides a methodology to evaluate the orientation of existing runways and to design new runways. Such methodology is based on the analysis wind data, considering both observed values and estimated gusts.Peer Reviewe

    Analysis of wind data for airport runway design

    No full text
    Purpose: To provide a methodology, and examples of application, for analyzing wind data for the correct orientation of airport runways. Design/methodology/approach: More than 90000 observed wind data have been analyzed for each one of the three airports used as case studies. Both observed and estimated gusts have been considered. Findings: If only observed data are considered, each single runway of the three airports used as case studies is correctly oriented. When estimated gusts are considered, the FAA requirements are not satisfied by a single runway in some airports (which anyway satisfy such requirements by using more runways). Practical implications: The correct orientation of runways minimize the crosswind components, then increase the safety of the airports. Originality/value: The paper provides a methodology to evaluate the orientation of existing runways and to design new runways. Such methodology is based on the analysis wind data, considering both observed values and estimated gusts.</p

    A Heuristic Method for Modeling Odor Emissions from Open Roof Rectangular Tanks

    No full text
    This paper presents heuristic equations for estimating odor emissions from open-roof rectangular tanks as a function of the tank orientation, wind direction, wind speed and distance of the emitting surface from the tank top. These types of equations are important because they may help to improve emission calculations to avoid overestimations, which are damaging to the plant owner, and underestimations, which are negative for the population around the plant. Odor emissions were determined for four tanks with the same area, different shape factors and two different orientations and then used as inputs for a dispersion model in order to calculate separation distances and evaluate their differences. The results show that different separation distances were obtained depending on the tank orientation, shape factor and level of filling. Future field applications to verify and improve the proposed equations are desirable. If the effect of the tank orientation on odor emission is proven, the design of future industrial plants containing open-roof rectangular tanks should consider the results of detailed wind data analysis

    Analysis of Wind Data for Sports Performance Design: A Case Study for Sailing Sports

    Get PDF
    Environmental conditions affect outdoor sports performance. This is particularly true in some sports, especially in the sport of sailing, where environmental parameters are extremely influential as they interact directly with strategic analysis of the race area and then with strategic analysis of the performance itself. For these reasons, this research presents an innovative methodology for the strategic analysis of the race course that is based on the integrated assessment of meteorological data measured on the ground, meteorological data measured at sea during the training activities and the results of the CALMET model in hindcasting over a limited scale. The results obtained by the above analysis are then integrated into a graphical representation that provides to coaches and athletes the main strategic directions of the race course in a simple and easy-to-use way. The authors believe that the innovative methodology that has been adopted in the present research may represent a new approach to the integrated analysis of meteorological data on coastal environments. On the other hand, the results of this analysis, if presented with an appropriate technique of meta‑communication adapted to the sport sectors, can be used effectively for the improvement of athletes’ performances

    Analysis of Thermal Comfort for Cycling Sport: a Case Study for Rio de Janeiro Olympic Games

    No full text
    As well known the meteorological and the environmental parameters (as wind, air temperature, rain, humidity, altitude, location, etc…) affect strongly the sport performance. Considering the recent literature on this topic, it is evident how the evaluation of the thermal comfort in the athletes is a crucial subject that has to be studied. In fact the thermal comfort of the athletes is not only linked with the sport performance but also with the safety of the athletes themselves. For these reasons in this research it is presented an innovative methodology to evaluate the thermal comfort of cycling athletes at the next Rio de Janeiro Olympic Games. This analysis is carried out for the Rio de Janeiro area considering the two venues for the cycling sport and for the two disciplines (Time Trial and Road Race). The meteorological data of two stations representative of the racing areas have been collected for a period of 20 years. They have been analyzed to produce the wind roses and to calculate two thermal indices: Predicted Mean Vote (PMV) and Physiological Equivalent Temperature (PET). The results of this research show the importance of the climatological analysis for optimizing the training and nutrition plans of the athletes
    corecore