38,087 research outputs found

    Computer program to determine the irrotational nozzle admittance

    Get PDF
    Irrotational nozzle admittance is the boundary condition that must be satisfied by combustor flow oscillations at nozzle entrance. Defined as the ratio of axial velocity perturbation to the pressure perturbation at nozzle entrance, nozzle admittance can also be used to determine whether wave motion in nozzle under consideration adds or removes energy from combustor oscillations

    The Relativistically Spinning Charged Sphere

    Full text link
    When the equatorial spin velocity, vv, of a charged conducting sphere approaches cc, the Lorentz force causes a remarkable rearrangement of the total charge qq. Charge of that sign is confined to a narrow equatorial belt at latitudes b⩽3(1−v2/c2)1/2b \leqslant \sqrt{3} (1 - v^2/c^2)^{{1/2}} while charge of the opposite sign occupies most of the sphere's surface. The change in field structure is shown to be a growing contribution of the `magic' electromagnetic field of the charged Kerr-Newman black hole with Newton's G set to zero. The total charge within the narrow equatorial belt grows as (1−v2/c2)−1/4(1-v^2/c^2)^{-{1/4}} and tends to infinity as vv approaches cc. The electromagnetic field, Poynting vector, field angular momentum and field energy are calculated for these configurations. Gyromagnetic ratio, g-factor and electromagnetic mass are illustrated in terms of a 19th Century electron model. Classical models with no spin had the small classical electron radius e2/mc2∼e^2/mc^2\sim a hundredth of the Compton wavelength, but models with spin take that larger size but are so relativistically concentrated to the equator that most of their mass is electromagnetic. The method of images at inverse points of the sphere is shown to extend to charges at points with imaginary co-ordinates.Comment: 15 pages, 1figur

    Loophole-free Bell test based on local precertification of photon's presence

    Get PDF
    A loophole-free violation of Bell inequalities is of fundamental importance for demonstrating quantum nonlocality and long-distance device-independent secure communication. However, transmission losses represent a fundamental limitation for photonic loophole-free Bell tests. A local precertification of the presence of the photons immediately before the local measurements may solve this problem. We show that local precertification is feasible by integrating three current technologies: (i) enhanced single-photon down-conversion to locally create a flag photon, (ii) nanowire-based superconducting single-photon detectors for a fast flag detection, and (iii) superconducting transition-edge sensors to close the detection loophole. We carry out a precise space-time analysis of the proposed scheme, showing its viability and feasibility.Comment: REVTeX4, 7 Pages, 1 figur

    Coherent states and the classical-quantum limit considered from the point of view of entanglement

    Full text link
    Three paradigms commonly used in classical, pre-quantum physics to describe particles (that is: the material point, the test-particle and the diluted particle (droplet model)) can be identified as limit-cases of a quantum regime in which pairs of particles interact without getting entangled with each other. This entanglement-free regime also provides a simplified model of what is called in the decoherence approach "islands of classicality", that is, preferred bases that would be selected through evolution by a Darwinist mechanism that aims at optimising information. We show how, under very general conditions, coherent states are natural candidates for classical pointer states. This occurs essentially because, when a (supposedly bosonic) system coherently exchanges only one quantum at a time with the (supposedly bosonic) environment, coherent states of the system do not get entangled with the environment, due to the bosonic symmetry.Comment: This is the definitive version of a paper entitled The classical-quantum limit considered from the point of view of entanglement: a survey (author T. Durt). The older version has been replaced by the definitive on

    Interference filter photometry of periodic comet Ashbrook-Jackson

    Get PDF
    P/Ashbrook-Jackson has a period of 7.43 years and comes to perihelion at 2.284 AU. It is a low inclination object (12.5 deg) of moderate eccentricity (0.400). In 1963, it made the best possible apparition, coming to perihelion and opposition virtually simultaneously, but no one made physical observations of faint periodic comets in 1963. In 1978 Ashbrook-Jackson came to opposition on Sept. 28, just 40 days after perihelion. It will be just over 100 years before an equally favorable apparition recurs. P/Ashbrook-Jackson was recovered by Pereyra at Cordoba Observatory on April 28, 1977, more than a year and a quarter before perilhelion and already showing a diffuse coma with central condensation. Its helio-centric distance was then 3.7 AU. An extensive program was planned, but equipment problems and weather ultimately limited it to the two nights of data reported here

    Behavior of nozzles and acoustic liners in three dimensional acoustic fields

    Get PDF
    Theoretical values of the admittances of various nozzles were computed and compared with the corresponding experimental values. The existing data reduction scheme was corrected and all available experimental data has been rechecked and corrected whenever necessary; the updated experimental admittance values are presented. An analysis associated with the frequency sensitivity of experimental admittance values was initiated and the analog-to-digital Data Reduction Program which has become operational is discussed. Fourteen nozzle tests were conducted during this report period

    Extended warm gas in Orion KL as probed by methyl cyanide

    Full text link
    In order to study the temperature distribution of the extended gas within the Orion Kleinmann-Low nebula, we have mapped the emission by methyl cyanide (CH3CN) in its J=6_K-5_K, J=12_K-11_K, J=13_K-12_K, and J=14_K-13_K transitions at an average angular resolution of ~10 arcsec (22 arcsec for the 6_K-5_K lines), as part of a new 2D line survey of this region using the IRAM 30m telescope. These fully sampled maps show extended emission from warm gas to the northeast of IRc2 and the distinct kinematic signatures of the hot core and compact ridge source components. We have constructed population diagrams for the four sets of K-ladder emission lines at each position in the maps and have derived rotational excitation temperatures and total beam-averaged column densities from the fitted slopes. In addition, we have fitted LVG model spectra to the observations to determine best-fit physical parameters at each map position, yielding the distribution of kinetic temperatures across the region. The resulting temperature maps reveal a region of hot (T > 350 K) material surrounding the northeastern edge of the hot core, whereas the column density distribution is more uniform and peaks near the position of IRc2. We attribute this region of hot gas to shock heating caused by the impact of outflowing material from active star formation in the region, as indicated by the presence of broad CH3CN lines. This scenario is consistent with predictions from C-shock chemical models that suggest that gas-phase methyl cyanide survives in the post-shock gas and can be somewhat enhanced due to sputtering of grain mantles in the passing shock front.Comment: 24 pages, 20 figures, accepted for publication in A&
    • …
    corecore