General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Interference Filter Photometer of Periodic Comet Ashbrook-Jackson

```
(NAS: CR-163581) INTERFERENCE FILTE& N80-33318
PLOIOMETEY OF PERIODIC COMET
A&HBRGOK-JACriSON (Jet Propulsion Lab.) 30 p
AC AOB/AF AO1 CSCL 03A 
63/89 28890
```

R.L. Newburg, Jr.*
J.F. Bell ${ }^{+}$
T.B. McCord ${ }^{+}$

[^0]

Report on Contract NASA/JPL BP 699908
August 1980

I. INTKODUCTION

P/Ashbrooi-Jackson was discovered on Aug. 24, 1948 by Ashbrook at Lowell Observatory and simultaneously by Jackson in Johannesburg, South Africa. The comet has a period of 7.43 years and comes to perihelion at $2.284 \mathrm{Al}^{\circ}$. It is a low inclination object (12:5) of moderate eccentricity (0.400) (Marsden, 1979). In 1963 it made the best possible apparition, coming to perihellwn and opposition virtually simultareously, but no one made physical observation of faint periodic comets in 1903. In 1978 Ashbrook-Jackson came to opposition on Sept. 28, just 40 days after perihelion. $1 t$ will be just over 100 years before an equally favorable apparition recurs.
p/Ashbrook-Jackson was recovered by Pereyra at Córdoba Observatory on April 28 , 1977, more than year and a quarter before perihelion and already showing a diffuse coma with central condensation (Marsden, 1977). Its heliocentric distance was then 3.7 AL : At that time there was no published photoelectric photometry for any comet beyond 2 AU nor for any short period comet, although we were aware of some data in each category awaiting publication. An extensive program was planned, but equipment problems and weather ultimately limited it to the two nights of data reported herc.

The observations were made on the nights of Oct. 9 and 10 UT 1978 with the 2.24-meter telescope of Nauna Kea Observatory. The two-beam sky-subtracting photometer (McCord 1968) was used with a gallium arsenide phototube and the filters described in Table I. 53 Piscium was used as the primary standard star. As it was necessary to use a neutral-density attenuation filter when observing the primary standard, a secondary syandard star of appropriate brightness (SAO 109032) was observed at frequent intervals to obtain extinction coefficients. Transformation between the standards was done by means of filter factors for each wavelength derived by observing the secondary standard both with and without the attenuation filter. Corrections for dark count rate, beam inequality, and atmospheric extinction were made using the procedure described in Chapman and Gaffey (1979) and gave the comet/53 Psc flux ratios outside the atmosphere.

Table I. Comet Interference Filters

Filter	Central Wavelength (\AA)	FWHM (\AA)	Peak Transmission $\%$
1. Continuum	3300	275	23.4
2. 0 H	3070	110	11.5
3. $\mathrm{C}_{2}(0-0)$	5120	150	64.2
4. Continuum	4815	110	54.6
5. CN blue	3840	110	36.2
6. C_{3}	4050	120	36.8
7. Continuum	4465	115	52.6
8. NH^{2}	3425	140	15.8
9. CO^{+}	4510	140	55.6
10. $\mathrm{C}_{2}(1-0)$	4660		55.7

III. CALIBRATION

Reductions to absolute flux density were made by reference to the nearby B3V star 53 Psc, which has been the subject of extensive study by A'Hearn (unpublished). Extrapolation to wavelengths less than the $3266 \AA$ limit of A'Hearn's photometry was made by using Kurucz's theoretical model for a star of 18,000K and $\log g=4.00$ (Kurucz, 1979).

A further complication at short wavelengths is the steep gradient in the atmospheric extinction. Rather than assuming a mean extinction coefficient for the band, each of the three filters of shortest wavelength (filters No. 1, 2, and 8) was treated point by point, in effect making the atmosphere a part of the filter. The extinction curve, shown as figure 1 , was extrapolated to short wavelengths using the technique of Hayes \& Latham (1975). The effect of this is readily apparent in Table II, where the absolute flux densities are given for 53 Psc in the normal fashion (outside the atmosphere through the filter) and, for the three short wavelength bands, through one Mauna Kea atmosphere. Transmission curves for the filters were run on a Carey 14 laboratory spectrophotometer within two weeks of the observations.

Table II. Absolute Flux Density - 53 Psc

IV. DATA REDUCTION

The ratio of the total flux $F_{\sigma}(1)$ from the comet through filter 1 to the total flux $F_{*}(1)$ from the standard star through that filter can be written:

$$
\begin{equation*}
\frac{F_{Q}(i)}{F_{*}(i)}=\frac{k_{i}\left[b_{1} f_{\text {band }}(i)+c_{i} f_{\text {cont }}(1)\right]}{k_{i} \int f_{*}(\lambda) s(\lambda) a(\lambda) d \lambda} \tag{1}
\end{equation*}
$$

The flux from the comet is separated into that from emission features (band) and that from the continum (cont). The b_{i} and c_{i} are the filter factors for band and continuum, namely

$$
\begin{align*}
& b_{i}=\frac{\int f_{\text {band }}(\lambda) s(\lambda) a(\lambda) d \lambda}{\int f_{\text {band }}(\lambda) d \lambda} ; \tag{2}\\
& c_{i}=\frac{\int f_{\text {cont }}(\lambda) s(\lambda) a(\lambda) d \lambda}{\int f_{\text {con: }}(\lambda) d \lambda} \tag{3}
\end{align*}
$$

while $f_{\text {band }}(i)$ and $f_{\text {cont }}$ (i) refer to the total band and continuum fluxes incident upen the filter (and atmosphere) within the wavelength range transmitted by each filter, namely

$$
\begin{align*}
& f_{\text {band }}(i)=\int_{i} f_{\text {band }}(\lambda) d \lambda \tag{4}\\
& f_{\text {cont }}(i)=\int_{i} f_{\text {cont }}(\lambda) d \lambda \tag{5}
\end{align*}
$$

where $f_{\text {band }}(\lambda)$ and $f_{\text {cont }}(\lambda)$ are the fluxes at wavelength λ from bands and continuum respectively. The k_{i} is the transmission factor of the telescope optics, detector, etc over filter i, assumed constant over the passband, and of course it then cancels out. When the extinction coefficient is essentialiy constant across the filter the a(A) terms can be cancelled out also.

The flux in the continuum can be written as

$$
\begin{equation*}
f_{\text {cont }}(\lambda)=r(\lambda) f(\lambda) \tag{6}
\end{equation*}
$$

where $f(0)$ is the solar spectral irradiance and $r(A)$ is the fraction of that irradiance falling on Earth after reflection from the comet. In fact

$$
\begin{equation*}
\therefore \quad r(\lambda)=\frac{A p(\lambda) \frac{1}{4}(\lambda)}{\pi r^{2} \Delta^{2}} \tag{7}
\end{equation*}
$$

```
    A = cross-sectional area of comet dust and nucleus
    p(\lambda)= geometric albedo
    \phi(\alpha)= phase function at phase angle \alpha
    r heliocentric distance in AU
    \Delta= geocentric distance in same units as A
```

If $p(\lambda)$ is essentially constant across the passband of the filter, as is generally the case, then $r(\lambda)$ can be pulled out of the integral, leaving

$$
\begin{align*}
c_{i} & =\frac{\int f_{i}(\lambda) s(\lambda) a(\lambda) d \lambda}{\int f_{0}(\lambda) d \lambda} \tag{8}\\
f_{\text {cont }}(i) & =r_{i} \int_{i} f_{f}(\lambda) d \lambda \tag{9}
\end{align*}
$$

where r_{i} is the mean valse of $r(\lambda)$ over the passband.

The unknowns sought from the observations are, of course, the values of r_{i} and $f_{\text {band }}(1)$. For the continuum filters the $f_{\text {band }}(1)$ is zero except for miner: contamination, and r_{i} results directly from the observations. For the band filters x_{i} must be assumed the same as for a nearby continum filter or interpolated or extrapolated from two or more values of r_{i}.

The avallable data are summarized in Table III and the flux density ratios follow in Table IV. These are fust as they come from the computer except that the forward and backward runs through the filtpri, which are printed out separately, have been combined. Additional integrations on just filters 1 and 2 on Oct. 10 have also been combined with the remainder of the data.

The emission band filter factors given in Table V were calculated using typical band envelopes from the different sources listed in the table. The individual lines of a resonance fluorescence emission band change with heliocontric velocity, the Swings effect. While quite significant in effect on the total band strength, especially for bands in regions where there are large numbers of strong Fraunhofer lines in the exciting solar spectrum, the Swings effact causes almost no change in filter factors, where line strengths appear in both numerator and denominator. The difference was roughly 0.1% in two cases that were checked, each for two very different velocities, Far more important is contamination from unwanted bands in the tails of filter transmission. Such potential contaminations are listed in Table V. These contaminations are not as serious as they may first appear, however. The co^{+}bands are usually very weak near the nucleus, while the $\mathrm{CN}(0-2)$ and $\mathrm{CH}(0-0)$ bands are always far weaker than the bands which they contaminate, and, where necessary, rough currections can be made for the residual effect.

Table III. Data Summary

$\begin{aligned} & \text { Date } \\ & \text { (U.T.) } \end{aligned}$	Diaphragm (arc seconds)	Filters	Integration Timu (seconds)
Oct. 9	25.7	1 and 10	71
		2 chru 9	142
Oct. 10	25.7	1	436
		2	543
		3 thru 9	11.
		10	57
Oct. 10	16.5	1 thru 4	23
		5 thru 9	40
		10	23

Table IV. Flux Density Ratios - Comet/53 Psc

Filter Number	Oct. 9	Oct. 10 25.7 diaph.	Oct. 10 $16: 5$ diaph.
1	$0.314 \pm 1.109 \times 10^{-4}$	$12.884 \pm 1.217 \times 10^{-4}$	$8.682 \pm 1.377 \times 10^{-4}$
2	$3.741 \pm 3.669 \times 10^{-4}$	$12.267 \pm 6.900 \times 10^{-4}$	$5.221 \pm 3.260 \times 10^{-4}$
3	$5.630 \pm 0.367 \times 10^{-3}$	$7.858 \pm 0.485 \times 10^{-3}$	$6.253 \pm 0.367 \times 10^{-3}$
4	$5.236 \pm 0.400 \times 10^{-3}$	$7.543 \pm 0.524 \times 10^{-3}$	$5.573 \pm 0.465 \times 10^{-3}$
5	$1.303 \pm 0.133 \times 10^{-3}$	$1.911 \pm 0.147 \times 10^{-3}$	$1.298 \pm 0.132 \times 10^{-3}$
6	$2.140 \pm 0.153 \times 10^{-3}$	$3.204 \pm 0.206 \times 10^{-3}$	$2.311 \pm 0.134 \times 10^{-3}$
7	$3.434 \pm 0,270 \times 10^{-3}$	$5.024 \pm 0.360 \times 10^{-3}$	$3.570 \pm 0.239 \times 10^{-3}$
3	$10.543 \pm 1.776 \times 10^{-4}$	$15.550 \pm 3.034 \times 10^{-4}$	$10.287 \pm 2.592 \times 10^{-4}$
9	$3.725 \pm 0.274 \times 10^{-3}$	$5.130 \pm 0.299 \times 10^{-3}$	$3.388 \pm 0.244 \times 10^{-3}$
10	$4.419 \pm 0.320 \times 10^{-3}$	$6.136 \pm 0.357 \times 10^{-3}$	$4.293 \pm 0.237 \times 10^{-3}$

Table V. Emission Band Filtic Factorst

Filter Number	Emission Band	Filter Factor b_{1}	Data Source and Potential Contaminating Bands
2	$\mathrm{OH}(0-0 \& 1-1)$	0.0184	Swings \& Haser (1956)
3	$\mathrm{C}_{2}(0-0)$	0.4534	Gebel (1970)
5	$\mathrm{CN}(0-0)$	0.2859	Aikman, al (1974) The (1-1) band of CN overlies ($0-0$). It is extremely weak. Six weak features of unknown origin appear in the region $\lambda \lambda 3700 \cdots 3830$.
6	C_{3} sroup	0.2502	Swings \& Haser (1956) This filter leaks 0.5% of the $\mathrm{CN}(0-0)$ band 3.6% of the $\mathrm{CN}(0-1)$ band 0.3% of the $\mathrm{CH}(0-0)$ band 15% of the $\left.\mathrm{CO}^{+}(3-0), 4-1,8.2-0\right)$ bands
8	NH (0-0)	0.4255	Swings \& Haser (1956)
9	$\mathrm{CO}^{+}(1-0)$	0.4613	Swings \& Haser (1956) This filter leaks 6.5% of the C_{2} (1-0) band 0.7% of the $C_{2}(2-0)$ band 7.5% of the $\mathrm{CN}(0-2)$ band
10	$c_{2}(1-0)$	0.4154	Gebel (1970) This filter leaks 5.1% of the $\mathrm{CO}^{+}(1-0)$ band 52.6% of the $\mathrm{CN}(0-2)$ band

*Factors for OH and NH include the atmosphere as a part of the filter.

There are also some contaminations from emission bands in the contimuum filters. These are listed in Table VI. Again corrections can be made where necessary.

The continum filter factors are given in Table VII as $c_{1} \int f_{i}(\lambda) d \lambda$, which is the same as $\int f_{6}(\lambda) s(\lambda) a(\lambda) d \lambda$ or $\int f_{0}(\lambda) s(\lambda) d \lambda$ depending upon whether the atmosphere was included as part of the illter. The solar spectral irradiances were taken from Labs and Neckel (1968), table 7 for $\lambda /</ 3599 \AA$ and Table 4 for $\lambda>3599 \AA^{\circ}$.

Tabla V1. Continuum Filter Contamination

Filter Number	Wavelengths to 1\% transmission		Contamination
1	1)35.0-3550		1.6\% of of ($0-0 \& 1-1$) bands 14.7% of $\mathrm{NH}(0-0)$ band
4	1:4715-4905		1.9\% of $\mathrm{C}_{2}(1-0)$ band
7	$14.4360-4570$		1.2: of $\mathrm{C}_{2}(1-0)$ band 3.7. of $\mathrm{CU}^{+}(1-0)$ band 2.1\% of $\mathrm{C}_{2}(2-0)$ band
Table VII. Solar Continuum thru Filters (mm^{-2})			
Filter Number	Wavelength (A)	$\iint_{1} \mathrm{f} \cdot(1) s_{1}(\cdot) \mathrm{d}$.	$\int_{i} i(3) s_{i}(1) \mathrm{a}(\cdot) \mathrm{d}$
1	3300	-	3.0266
2	3070	-	0.1903
3	5120	17.0203	-
4	4815	11.5300	-
5	3340	4.0671	-
6	4050	8.0115	\longrightarrow
7	4465	11.6293	
8	3425	-	0.8903
9	4510	15.4277	$\underline{\square}$
10	4660	15.9224	-

In order to get a feeling for the relative magnitudes of continum and emission contributions by the comet, the results for Oct, 10 through the iarger diaphragm were treated as if there were no emission contribution. Values of r were calculated for each passband, assuming $b=0$, and plotted vs. wavelength as shown in Figure 2. It immediately became obvious that the continuum fominated the spectrum to the extent that our data were consistent with pur continuum, no emission band being more than $1-1 / 2$ standard deviations above the apparent continuum as suggested by least squares fits to three and six filters. The NH band contamination of the No. 1 continuum filter would skew the fit, if the apparent NH were real. Attempting to solve for the NH and continuum level simultaneousiy, assuming the later is the same for both filters, immediately indicates that there is iftle or to NH , the formal solution in fact giving a negative NH abundance. Including the NH filter in the continuum determination would raise it only slightly since the NH passband is noisy and would have to be given low weight.

Obviously Ashbrook-Jackson must have a gas coma, the gas being required to raise the dust and/or icy grains which largely are responsible for the very prominent visible light coma. It is equally obvious that neither C_{2} nor CO^{+}are major components of that gas in the inner $12,500 \mathrm{~km}(12 \% 9)$ of the coma. Therefore the data for October 9 and the smaller diaphragm data for October 10 are presented in plots similar to Figure 2 as Figures 3 and 4. The dotted line is again a least squares fit to the three continuum filters plus the two C_{2} filters and the CO^{+}filter, while the solid line fits only the three continuum filters. The values plotted in all three figures are also given in Table VIII.

Figure 4. (Comet Flux/Solar Flux) $\times 10^{16}$ vs. Wavelength

Table VITI. Ratio Comet Flux : Solar Flux Received at Earth

Filter Number	Oct. 9	Oct. 10 25:7 diaph.	$\begin{gathered} \text { Oct. } 10 \\ 16: 5 \text { diaph. } \end{gathered}$
1	$5.207+0.655 \times 10^{-16}$	$7.612 \pm 0.720 \times 10^{-16}$	$5.129 \pm 0.814 \times 10^{-16}$
2	$7.916 \times 3.323 \times 10^{-16}$	$11.169 \times 16.8 \times 10^{-16}$	$4.728 \pm 2.952 \times 10^{-16}$
3	$6.300 \pm 0.443 \times 10^{-16}$	$9.491 \pm 0.586 \times 10^{-16}$	$7.552 \pm 0.443 \times 10^{-16}$
4	$6.983 \pm 0.533 \times 10^{-16}$	$10.060 \pm 0.699 \times 10^{-1.6}$	$7.433 \pm 0.620 \times 10^{-16}$
3	$6.137 \pm 0.632 \times 10^{-16}$	$9.075 \pm 0.693 \times 10^{-16}$	$6.164=0.627 \times 10^{-16}$
6	$6.014 \pm 0.430 \times 10^{-16}$	$9.004 \pm 0.579 \times 10^{-16}$	$6.495 \pm 0.377 \times 10^{-16}$
7	$5.369 \pm 0.461 \times 10^{-16}$	$8.587 \pm 0.615 \times 10^{-16}$	$6.102 \pm 0.408 \times 10^{-16}$
i	$6.516 \pm 1.097 \times 10^{-16}$	$9.610 \pm 1.375 \times 10^{-16}$	$6.358 \pm 1.602 \times 10^{-16}$
9	$6.063 \pm 0.446 \times 10^{-16}$	$8.350 \pm 0.437 \times 10^{-16}$	$6.329 \pm 0.397 \times 10^{-16}$
10	$6.582 \pm 0.477 \times 10^{-16}$	$9.140 \pm 0.532 \times 10^{-16}$	$6.395 \pm 0.353 \times 10^{-16}$

Geometrical data for the comet at the time of observations are given in Table IX. As a final stage in basic data reduction, six passbands are treated as pure continum data and the geometric factors applied to reduce $r(x)$ to Ap (i) using equation (7). A phase function of $0.03 \mathrm{mag}^{\mathrm{mag}} \mathrm{deg}^{-1}$ is assumed. The $A p(\lambda)$ are given in Table X. The other four passbands are treated as containing emission data. The continuum values given in Figures 2 thrugh 4 are subtracted and the filter factors (b_{i}) applied to give the band strengths in Table XI. As previously indicated, these are poorly determined.

Table IX. Geometric Data for P/Ashbrook-Jackson

$\begin{aligned} & \text { Dato } \\ & (\mathrm{U} .1 \mathrm{l} .) \end{aligned}$	Geocentric Distance (AU)	Heliocentric Distance (Al)	```Heliocentris Velocity (km s```	Phase Angle (deg)
Oct. 9.5	1.3298	2.3130	+1.945	5.74
Oet. 10.5	1.3340	2.3141	+1.930	6.29

Table X. Area-Albedo Products in Si: Passhands- $\left(\mathrm{km}^{2}\right)$ *

Filter Number	Wavelength (A)	Oct. 9 $25: 7$ diaph.	Oct. 10 $25: 7$ diaph.	Oct. 10 $10: 5 \mathrm{diaph}$
.1	3300	405.2	606.9	403.9
3	5120	520.2	756.7	602.1
4	4315	543.4	802.1	592.6
7	4465	450.7	684.6	430.5
9	4510	471.8	605.7	504.6
10	4660	512.2	728.7	509.9

* $\mathrm{Ap}(\lambda)$ - cross section times geometric albedo

Table XI. Absulute Emission Band Strengths-(Wm^{-2})

Filter Number	Emission Feature	Oct. 9 25.7 diaph.	Oct. 10 $25: 7$ diaph.	Oct. 10 $16: 5$ diaph.
2	OH ($0-0$ \& $1-1$)	3.20×10^{-15}	4.04×10^{-15}	1.32×10^{-16}
5	$\mathrm{CN}_{\text {blue }}(0-0)$	8.34×10^{-16}	1.39×10^{-15}	8.02×10^{-16}
6	C_{3} group	6.87×10^{-16}	1.93×10^{-15}	4.34×10^{-15}
8	Nil ($0-0$)	4.59×10^{-15}	6.95×10^{-15}	4.60×10^{-15}

V. INTERPRETATION AND MODELS

The basic data reduction has made it clear that our data is largely on the "dust" component of Ashbrook-Jackson, but is that dust non-volatile or is it in some part icy grains? Dust expanding isotropically at velocity V_{d} from a nucleus producing Q_{d} particles per second will cause $T_{d}(s)$ total particles to be seen inside a cylinder s meters in diameter centered on the nucleus, where $T_{d}(s)$ is given.by

$$
\begin{equation*}
T_{d}(s)=\frac{\pi Q_{d} s}{2 V_{d}} \tag{10}
\end{equation*}
$$

Therefore for particles of any given sine or all sizes taken together, the total number of non-volatile particles seen in an aperture should increase linearly with aperture size, and the ratio for our two apertures should be 1.558 . This linear dependence has been confirmed observationally in the infrared thermal emission of larger cometary dust (Ney) and is what one should expect for all particle sizes out to nucleus distances where radiation pressure begins "removing" particles.

In the continuum passband data listed in Table X the mean ratio between the two apertures is only 1.375 . This indicates there is an important component present only in the smaller aperture or at least contributing relatively much more reflected light near the nucleus than far from it when compared with dust. This is just the behavior to be expected of icy grains, which sublime as they move away from the nucleus.

Although we have insufficient data to derive precise values for the gas flow, dust flow and icy grain flow, the approximate contributions of each can
be determined within the framework of a simple model. The contributions of ench must be internally consistent in that the gas cannot lift many cimes its own mass in dust and grains from the nucleus, and the mass of grains, which soon become gas, cannot be more than a fraction of the mass of gas.

We first set limits on the gas flow, since the total gas flux determines the expansion velocities of dust and grains. If we consider the apparent valun of the $C N$ emission data, then the $1.39 \times 10^{-15} \mathrm{Wm}^{-2}$ passing through our $1.22 \times 10^{-8} \mathrm{sr}$ diaphragm correspands to $1.01 \times 10^{29} \mathrm{CN}$ modecules, using the appropriate Tatum and Gillespie (1977) emission rate factor. Using the Haser theory formalism (e.g. Newburn \& Johnson, 1973) and Delsemme's (1976) scale lengths for $C N$, this implies a $C N$ production rate of 5.7×10^{24} molecules s^{-1}. If the $C N$ abundance is normal, the total gas production should be about 6×10^{26} molecules s^{-1}. Part of this pioduction may originate from the icy grains rather than directly on the nucleus, but it seems likely that there is a surface flow of at least half of this or 3×10^{26} molecules s^{-1}. As an upper limit the icy grains wouid constitute only a few percent of the gas flow, and the real observed value of flux would be at its 30 upper limit, making the gas production $1.8 \times \overline{1} 0^{27}$ molecules s^{-1}. This could be stretched only by assuming an abornmally low CN abundance (i.e. a mixing ratio <<10 ${ }^{-2}$). Such a low abundance might occur because the "normal" chemistry no longer functions in the inner coma at low densities far from the Sun for example.

The fluxes are even less certain than the production rates since the size of the nucleus is unknown. Assuming a nominal 2.5 km radius nucleus emitting isotropically in the low flux case and only from the sunward hemisphere in the high flux case, the gas fluxes are $3.3 \times 10^{18} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ and $4.6 \times 10^{19} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$.

The two production rates correspond to gas flow in mass of $22.2 \mathrm{~kg} \mathrm{~s}^{-1}$ (half as gas, half as grains) and $66.7 \mathrm{~kg} \mathrm{~s}^{-1}$ (all as gas), assuming a mean molecular mass of 22.3 ($\mathrm{H}_{2} \mathrm{O}$ plus 20% mass 44 nmu). All of these figures are uncertain, but they indicate the right orders of magnitude.

To handle the icy grains we begin with the theory of Delsemme and Miller (1971). They derived the photometric profile of a halo of icy grains of uniform initial size expending isotopically and vaporizing. We integrated their equation 42 to find the total brightness inside an aperture of radius s.

$$
\begin{equation*}
B_{g}(s)=2 \sim R_{H}^{2} K\left[s \cos ^{-1} s-s^{2} \operatorname{in} \frac{1+\left(1-s^{2}\right)^{1 / 2}}{s}+\frac{1}{3}-\frac{\left(1-s^{2}\right)^{3 / 2}}{3}\right] \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{H}}=\text { halo radius } \\
& s \text { is expressed as a fraction of } \mathrm{R}_{\mathrm{H}}
\end{aligned}
$$

and
K contains the photometric quantities not explicitly given by Delsemme and Miller

$$
\begin{equation*}
\text { In fact } K=\frac{Q_{g} a_{g}^{2} p_{g} \phi_{g}{ }^{f}}{8^{2} v_{g} R_{H} r^{2}} \quad W^{-2} \mathrm{sr}^{-1} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{g}}=\text { grain production rate }\left(\mathrm{s}^{-1}\right) \\
& \mathrm{V}_{\mathbf{g}}=\text { grain expansion velocity }\left(\mathrm{ms}^{-1}\right)
\end{aligned}
$$

```
ag}=grain initial radius (m
P
|}\mp@subsup{g}{g}{*}\mathrm{ grain phase function
f
    r = heliocentric distance (AU)
```

If the entire halo is contained within the aperture (i.e. $s=1$), then the expression within the brackets equals $1 / 3$ and

$$
\begin{equation*}
B_{g}(1)=\frac{2 \pi}{3} R_{H}^{2} K \quad W s^{-1} \tag{13}
\end{equation*}
$$

As noted at the beginning of this section our data demands a photometrically large contribution from icy grains confined to the smaller aperture. At this distance of ishbrook-Jackson no icy halo can exceed about $15,000 \mathrm{~km}$ radius, and only particles of about 1 mm initial radius could reach even that far. Since 93% of the light is contained in the inner half of the halo in any event, It was assumed the halo was within the smaller diaphragm and $\mathrm{B}_{\mathrm{g}}(1)$ was used for all further calculations.

The surface brightness $\mathrm{B}_{\mathrm{d}}(\mathrm{s})$ of the dust inside a radius s is derived from equation 10 for the number of particles in the aperture by multiplying by the particle cross section and appropriate photometric quantities.

$$
\begin{equation*}
B_{d}(s)=\frac{1}{4 \pi} \sum_{i} \frac{\pi Q_{i} s}{2 V_{f}}\left(\pi a_{i}^{2}\right)\left(\frac{f^{i}}{r^{2}} \frac{p \phi}{\pi}\right) \quad W s^{-1} \tag{14}
\end{equation*}
$$

Three of the quantities are functions of size and must be summed (or integrated) over the i size intervals. The quantities have the same meaning for dust as
those with subscript g (for grains) have in equation 12. The Sekaninamililer (1973) particle size distribution function has been assumed. Velocities have been calculated for a large number of cases by Newburn (1979a, 1979b). The: vary greatly with flux at low flux leyels but are not a strong function of nucleus size (gravity). A sum appropriate to our $3.8 \times 10^{16} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ is:

$$
\begin{equation*}
\sum_{i} \frac{Q_{i} a_{i}^{2}}{V_{i}}=5.5 Q_{d} \quad(m) \tag{15}
\end{equation*}
$$

where
$Q_{d}=$ dust mass production rate ($\mathrm{kg} \mathrm{s}^{-1}$)

If we now write the grain flow rate in mass units as well, expressing the flow as a fraction F of the dust fiow rate, we have

$$
\begin{equation*}
E Q_{d}=Q_{g}\left(\frac{4}{3} \pi a_{g}^{3} g\right) \tag{16}
\end{equation*}
$$

Wsuming spherical particles of density f_{g}. Collecting the expressions from equations 12,13 , and 16 we have

$$
\begin{equation*}
B_{g}(1)=\frac{1}{4} \frac{\mathrm{FQ}_{\mathrm{d}} \mathrm{R}_{\mathrm{H}}}{\mathrm{a}_{\mathrm{g}} \mathrm{C}_{\mathrm{g}} \mathrm{~V}_{\mathrm{g}}}\left(\frac{\mathrm{p}_{\mathrm{g} \mathrm{~g}}}{\pi}\right) \frac{\mathrm{f}}{4 \pi \mathrm{r}^{2}} \quad \mathrm{~W} \mathrm{sr}^{-1} \tag{17}
\end{equation*}
$$

while equations 14 and 15 give us

$$
\begin{equation*}
B_{d}(s)=\frac{\pi^{2} s}{2} \quad\left(5.5 Q_{d}\right)\left(\frac{p \phi}{\pi}\right) \frac{f_{6}}{4 \pi r^{2}} \quad W s^{-1} \tag{18}
\end{equation*}
$$

For convenience we rewrite these equations in terms of the area albede product A
 degree. Since the phase angle was only 6° at the time of observation little error can be introduced in any case.

$$
\begin{align*}
& A_{g}(1)=\frac{P_{g}}{4} \frac{F Q_{d} R_{H}}{A_{g} \mathrm{~g}_{\mathrm{g}}} \tag{19}\\
& A_{d}(s)^{2}=\frac{\pi^{2} \mathrm{sp}}{2} \quad\left(5.5 Q_{d}\right) \quad\left(\mathrm{m}^{2}\right) \tag{20}
\end{align*}
$$

Since the ratio of particle area between diaphragms (1.375) is better determined than data for any single filter, we first write

$$
\begin{equation*}
\frac{A_{d}\left(s_{1}\right)+A_{g}(1)}{A_{d}\left(s_{2}\right)+A_{g}(1)}=1.375 \tag{21}
\end{equation*}
$$

In this ratio the production rate Q_{d} cancels out. We take $\rho_{g}=0.5 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$, an appropriate value for clathrate 3 rains. The diaphragm sizes s_{1} and s_{2} are $1.25 \times 10^{7} \mathrm{~m}$ and $8 \times 10^{6} \mathrm{~m}$ respectiveiy. Substituting these values into (21) we find

$$
\begin{equation*}
\frac{\mathrm{FR}_{\mathrm{H}}}{\mathrm{a}_{\mathrm{g}} \mathrm{~V}_{\mathrm{g}}}\left(\frac{\mathrm{P}_{\mathrm{g}}}{\mathrm{P}}\right)=2.15 \times 10^{11} \quad\left(\mathrm{~s} \mathrm{~m}^{-1}\right) \tag{22}
\end{equation*}
$$

The quantities R_{H} and V_{g} are both determined for any given value of a_{g}. A few of these are given in Table XII. If the ratjo of geometric albedos is ten, then the grain mass fraction F must be between about one for the smallest particles

Table XII. Icy Halo Parameters

$\begin{gathered} \text { Particle Radius } \\ a_{g} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { Particle Velocity } \\ V_{\mathrm{g}} \mathrm{l} \\ \left(\mathrm{~m}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Halo Radius } \\ R_{A} \\ (\mathrm{~m}) \end{gathered}$	$\frac{\frac{R_{H}}{a_{g} V_{g}}}{\left(\mathrm{sm}^{-1}\right)}$
0.75×10^{-6}	27.3	26×10^{5}	2.93×10^{10}
1.65×10^{-6}	14.9	$\times 9 \times 10^{5}$	3.66×10^{10}
2.5×10^{-6}	10.1	211×10^{5}	4.36×10^{10}
4.5×10^{-6}	4.8	0.15×10^{5}	6.94×10^{10}

and. one-third for the largest possible particles. Delsemme and Wenger's (1970) lab experiments strongly favored the creation of larger clathrate grains, giains an order of magnitude or more larger than the largest that can escape at the low fluxes we are doaling with here, but of course faboratory conditions of formation are probably grossly different than those for a comet. The mass fraction F varies inversely with the ratio of albedos which seems unlikely to go below five or above about twenty. For the largest possible (\%loum dianeter) grains the mass fraction must be between about one-sixth and two-thirds in Comet Ashbrook-Jackson. This confirms that icy grains represent a significant fraction of the solids lifted from at least this comet.

Delsemme and Miller's theory assumes the icy grains remain at the initial temperature, a reasonable first approximation. A more detailed study by Patashnick and Rupprecht (1977) shows that the particles cool and the sublimitation rate drops as they shrink, until the particles become so small they can no longer radiate efficiently, at which point they begin to warm again. The effect of this is to increase the halo size, but any particles reaching beyond the smallar diaphragm have shrunk significantly and contribute
little to the sattering cross section. What they do contribute must be balanced by an equal addition to the inner coma to maintain the observed photometric ratio, so this merely enhances the conclusion that icy grains make a major contribution to the light from the inner coma,

Returning to the area-albedo figures, because the data is a bit noisy we use all of the data as reflected in the continum slope of figure 2 rather than any particular filter or filters. Assuming the absolute values of p and Fg are 0.08 and 0.3 respectively at $\lambda 5000$, than $\overline{A p(\lambda)}$, the mean area albedo product, corresponding to a reflectivity ratio of 9.5×10^{-16} from figure 2 and using equation 7 is $757 \mathrm{~km}^{2}$. Using equations 19,20 , and 22 we find $Q_{d}=21.2 \mathrm{~kg} \mathrm{~s}^{-1}$. For these values $F Q_{d} \approx 6.6 \mathrm{~kg} \mathrm{~s}^{-1}$. Thus the total solids lifted off the surface are about $28 \mathrm{~kg} \mathrm{~s}^{-1}$. Our total gas flow predicted by using a normal cN mixing $\therefore \quad$ ratio was $44.4 \mathrm{~kg} \mathrm{~s}^{-1}$. If $6.6 \mathrm{~kg} \mathrm{~s}^{-1}$ come off as icy grains, the surface gas flow is $37.8 \mathrm{~kg} \mathrm{~s}^{-1}$, comparable to the solids lifted and quite physically realistic.

The actual cross sections of particles observed in the larger filter is $228 \mathrm{~km}^{2}$ of icy grains and $7187 \mathrm{~km}^{2}$ of dust for the albedos assumed. At $\lambda 3500$ the albedos have fallen to 0.065 and 0.65 indicating a reddish color for the scatterers, which was quite obvious in the figures. This mean color is real even though the albedos are assumed.

P/Ashbrook-Jackson is a comet with a strong reddish continuum which dominates the surface brightness out to $12,500 \mathrm{~km}$ nucleus distance, even in emission band filters. Fuxther, within 8000 km of the nucleus roughly twothirds of the continum flux is scattered from icy grains.

An extension of Delsemme and Miller's (1971) theory of icy grains has bect made to allow quantitative modeling of the continuum observations. Although tideters had to be assumed for icy grain density, icy grain and dust geometric albedos, and the $C N$ mixing ratio, completely normal values of $0.5 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$. 0.8 and 0.08 at $\lambda 5000$, and 10^{-2} respectively resulted in a completely self consistent model with a volatile flow of $44-1 / 2 \mathrm{~kg} \mathrm{~s}^{-1}, 6-1 / 2 \mathrm{~kg} \mathrm{~s}^{-1}$ of that as icy grains, and a non-volatile flow of $21 \mathrm{~kg} \mathrm{~s}^{-1}$. The icy grains had a diameter of $10 \mu \mathrm{~m}$ or less, the limit set by the low surface gas flux.

Absolute values are presented for the strengths of four emission bands, but with the exseption of $C N$ these are not discussed in detail because of the largo statistical errors in the weak signals. The apparent zero signal in three other bands is quite consistent with normal conetary abundances. The continuum data is well determined, however, especially in the aggregate of all 10 filters, and the quantitative conclusions on the continuum color and cross-section and the necessity for icy grains are quite firm.

We would like to acknowledge the help of D. Yeomans who furnished our ephemerides and L. Douglas who ran the filter transmission curves in the laboratory. M. $0^{\prime} h_{\text {c }}$. rn sent us his absolute photometry of 53 Pst in advance of publication. K. Jewel calculated most of our filter factors. M. Ronstadt stayed with us during the observing run to cure those ills to which modern electronics are occasionally subject. Our sincere thanks to your all.

One of ws (RLN) wishes to acknowledge that these results represent one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract NAS7-100, sponsored by the Planetary Program Office, Office of Space Science, National Aeronautics and Space Administration.

BIBLIOGRAPHY

Alkman, G.C.L., Balfour, W.J., and Tatum, J.B. (1974), The cyanogen bands of Comet Bennett 197011. Icarus 21, 303-316.

Chapman, C.R., and Gaffey, M.J. (1979). Reflectance spectra for 277 asteroids. pp 655-637 in Asterolds, T. Gehrels, ed. Univ. of Arizona Press, Tueson.

Delsemmo, A.月. (1976). The neutral coma of comets: A review. In The Study of Comets, pp 711-732. NASA Sp-393.

Delsemme, A.H., and Miller, D.C. (1971), Physico-chemical phenomena in comets-III. The continuum of Comet Burnham (1960II). Planet. Space Sci. 19, 1229-1257.

Delsemme, A.H., and Wenger, A. (1970). Physico-chemical phenomena in comets-I. Experimental study of snows in a cometary environment. Planet. Space Sci، 13, 709-715.

Finson, M.L. and Probstein, R.F. (1968). A theory of dust comets. II. Results for Comet Arend-Roland. Astrophys. J. 154, 353-380.

Gebe1, W.L. (1970). Spectrophotometry of Comets 1967n, 1968b, and 1968c. Astrophys. J. 161, 765-777.

Hayes, D.S. and Latham, D.W. (1975). A rediscussion of the atmospheric extinction and the absolute spectral-energy distribution of Vega. Astrophys. J. 197, 593-601.

Kurucz, R.L. (1979). Model atmospheres for G,F,A,B, and O stars. Astrophys. J. Supp. 40, 1-340.

Labs, D. and Neckel, il (1903). The radiation of the solar photosphere from 2000 . to 100 ;. Zoit. f. Astrophys. gh, 69 1-73.

Marsden, B.G. (1977). Periodic Comet Ashbrook-Jackson (1977g). I.A.U. Circ. Nis. 3070.
:harsden, B.G. (1979). Catalugue of cometary orbits, third edtion. Smithsonian Astraphys. obs., Cambridge.

MeCord, T.B. (1903). A double beam astronomical photometer. App. Opt m^{7} 475-47:.

Newburn, R.l.. Jr. (1979a). Models of $\mathrm{P} /$ Temper 2. JPL Publication 79-60. Jet propulsion Lab., Pasadena.

Newburn, R.L. Jr. (1979b). Physical models of Conet Halley based upon qualitative data from the 1910 apparition. The Comet Halley Micrometeoroid Hazard pp 35-50, ESA, Paris.

Newburn, R.L. Jr., and Johnson, T.V. (1973). Postperihelion interference filter photometry of the "annual" comet P/Encke. Icarus 35, 360-368.

Sokanina, \%., and Miller, F.D. (1973). Comet Bennett 197011. Science 179 , 565-567.

Swings, P., and Haser, L. (1956). Atlas of Representative Cometary Spectra. Liege, Belgium.

Tatum, J.B., and Gillespie, M.I. (1977). The cyanogen abundance of comets. Astrophys. 1. 218, 569-572.

[^0]: * Jet Propulsion Laboratory, California Institute of Technology
 + Hawaii Institute of Geophysics, University of Hawaii at Mana \# Department of Physics and Astronomy, University of Hawaii at Menoa

