1,026 research outputs found

    Comment on ``Neutrino oscillations in the early universe: how can large lepton asymmetry be generated?"

    Get PDF
    We comment on the recent paper by A. D. Dolgov, S. H. Hansen, S. Pastor and D. V. Semikoz (DHPS) [Astropart. Phys. {\bf 14}, 79 (2000)] on the generation of neutrino asymmetries from active-sterile neutrino oscillations. We demonstrate that the approximate asymmetry evolution equation obtained therein is an expansion, up to a minor discrepancy, of the well-established static approximation equation, valid only when the supposedly new higher order correction term is small. In the regime where this so-called ``back-reaction'' term is large and artificially terminates the asymmetry growth, their evolution equation ceases to be a faithful approximation to the Quantum Kinetic Equations (QKEs) simply because pure Mikheyev-Smirnov-Wolfenstein (MSW) transitions have been neglected. At low temperatures the MSW effect is the dominant asymmetry amplifier. Neither the static nor the DHPS approach contains this important physics. Therefore we conclude that the DHPS results have sufficient veracity at the onset of explosive asymmetry generation, but are invalid in the ensuing low temperature epoch where MSW conversions are able to enhance the asymmetry to values of order 0.20.370.2 - 0.37. DHPS do claim to find a significant final asymmetry for very large δm2\delta m^2 values. However, for this regime the effective potential they employed is not valid.Comment: RevTeX, 32 pages, including 4 embedded figures; this version to appear in Astropart.Phy

    The mixed problem in L^p for some two-dimensional Lipschitz domains

    Get PDF
    We consider the mixed problem for the Laplace operator in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. The boundary of the domain is decomposed into two disjoint sets D and N. We suppose the Dirichlet data, f_D has one derivative in L^p(D) of the boundary and the Neumann data is in L^p(N). We find conditions on the domain and the sets D and N so that there is a p_0>1 so that for p in the interval (1,p_0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L^p

    Adhesion-induced phase separation of multiple species of membrane junctions

    Full text link
    A theory is presented for the membrane junction separation induced by the adhesion between two biomimetic membranes that contain two different types of anchored junctions (receptor/ligand complexes). The analysis shows that several mechanisms contribute to the membrane junction separation. These mechanisms include (i) the height difference between type-1 and type-2 junctions is the main factor which drives the junction separation, (ii) when type-1 and type-2 junctions have different rigidities against stretch and compression, the ``softer'' junctions are the ``favored'' species, and the aggregation of the softer junction can occur, (iii) the elasticity of the membranes mediates a non-local interaction between the junctions, (iv) the thermally activated shape fluctuations of the membranes also contribute to the junction separation by inducing another non-local interaction between the junctions and renormalizing the binding energy of the junctions. The combined effect of these mechanisms is that when junction separation occurs, the system separates into two domains with different relative and total junction densities.Comment: 23 pages, 6 figure

    An efficient method for the incompressible Navier-Stokes equations on irregular domains with no-slip boundary conditions, high order up to the boundary

    Full text link
    Common efficient schemes for the incompressible Navier-Stokes equations, such as projection or fractional step methods, have limited temporal accuracy as a result of matrix splitting errors, or introduce errors near the domain boundaries (which destroy uniform convergence to the solution). In this paper we recast the incompressible (constant density) Navier-Stokes equations (with the velocity prescribed at the boundary) as an equivalent system, for the primary variables velocity and pressure. We do this in the usual way away from the boundaries, by replacing the incompressibility condition on the velocity by a Poisson equation for the pressure. The key difference from the usual approaches occurs at the boundaries, where we use boundary conditions that unequivocally allow the pressure to be recovered from knowledge of the velocity at any fixed time. This avoids the common difficulty of an, apparently, over-determined Poisson problem. Since in this alternative formulation the pressure can be accurately and efficiently recovered from the velocity, the recast equations are ideal for numerical marching methods. The new system can be discretized using a variety of methods, in principle to any desired order of accuracy. In this work we illustrate the approach with a 2-D second order finite difference scheme on a Cartesian grid, and devise an algorithm to solve the equations on domains with curved (non-conforming) boundaries, including a case with a non-trivial topology (a circular obstruction inside the domain). This algorithm achieves second order accuracy (in L-infinity), for both the velocity and the pressure. The scheme has a natural extension to 3-D.Comment: 50 pages, 14 figure

    Compton scattering beyond the impulse approximation

    Full text link
    We treat the non-relativistic Compton scattering process in which an incoming photon scatters from an N-electron many-body state to yield an outgoing photon and a recoil electron, without invoking the commonly used frameworks of either the impulse approximation (IA) or the independent particle model (IPM). An expression for the associated triple differential scattering cross section is obtained in terms of Dyson orbitals, which give the overlap amplitudes between the N-electron initial state and the (N-1) electron singly ionized quantum states of the target. We show how in the high energy transfer regime, one can recover from our general formalism the standard IA based formula for the cross section which involves the ground state electron momentum density (EMD) of the initial state. Our formalism will permit the analysis and interpretation of electronic transitions in correlated electron systems via inelastic x-ray scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur

    A novel determination of the local dark matter density

    Full text link
    We present a novel study on the problem of constructing mass models for the Milky Way, concentrating on features regarding the dark matter halo component. We have considered a variegated sample of dynamical observables for the Galaxy, including several results which have appeared recently, and studied a 7- or 8-dimensional parameter space - defining the Galaxy model - by implementing a Bayesian approach to the parameter estimation based on a Markov Chain Monte Carlo method. The main result of this analysis is a novel determination of the local dark matter halo density which, assuming spherical symmetry and either an Einasto or an NFW density profile is found to be around 0.39 GeV cm3^{-3} with a 1-σ\sigma error bar of about 7%; more precisely we find a ρDM(R0)=0.385±0.027GeVcm3\rho_{DM}(R_0) = 0.385 \pm 0.027 \rm GeV cm^{-3} for the Einasto profile and ρDM(R0)=0.389±0.025GeVcm3\rho_{DM}(R_0) = 0.389 \pm 0.025 \rm GeV cm^{-3} for the NFW. This is in contrast to the standard assumption that ρDM(R0)\rho_{DM}(R_0) is about 0.3 GeV cm3^{-3} with an uncertainty of a factor of 2 to 3. A very precise determination of the local halo density is very important for interpreting direct dark matter detection experiments. Indeed the results we produced, together with the recent accurate determination of the local circular velocity, should be very useful to considerably narrow astrophysical uncertainties on direct dark matter detection.Comment: 31 pages,11 figures; minor changes in the text; two figures adde

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Effects of dietary vegetable oil on atlantic salmon hepatocyte fatty acid desaturation and liver fatty acid compositions

    Get PDF
    Fatty acyl desaturase activities, involved in the conversion of the C18 EFA, 18:2n-6 and 18:3n-3, to the highly unsaturated fatty acids (HUFA) 20:4n-6, 20:5n-3 and 22:6n-3, are known to be under nutritional regulation. Specifically, the activity of the desaturation/elongation pathway is depressed when animals, including fish, are fed fish oils rich in n-3HUFA compared to animals fed vegetable oils rich in C18 EFA. The primary aims of the present study were a) to establish the relative importance of product inhibition (n-3HUFA) versus increased substrate concentration (C18 EFA) and, b) to determine whether 18:2n-6 and 18:3n-3 differ in their effects, on the hepatic fatty acyl desaturation/elongation pathway in Atlantic salmon (Salmo salar). Smolts were fed ten experimental diets containing blends of two vegetable oils, linseed (LO) and rapeseed oil (RO), and fish oil (FO) in a triangular mixture design for 50 weeks. Fish were sampled after 32 and 50 weeks, lipid and fatty acid composition of liver determined, fatty acyl desaturation/elongation activity estimated in hepatocytes using [1-14C]18:3n-3 as substrate, and the data subjected to regression analyses. Dietary 18:2n-6 was positively correlated, and n-3HUFA negatively correlated, with lipid content of liver. Dietary 20:5n-3 and 22:6n-3 were positively correlated with liver fatty acids with a slope greater than unity suggesting relative retention and deposition of these HUFA. In contrast, dietary 18:2n-6 and 18:3n-3 were positively correlated with liver fatty acids with a slope of less than unity suggesting metabolism via β-oxidation and/or desaturation/elongation. Consistent with this, fatty acyl desaturation/elongation in hepatocytes was significantly increased by feeding diets containing vegetable oils. Dietary 20:5n-3 and 22:6n-3 levels were negatively correlated with hepatocyte fatty acyl desaturation. At 32 weeks, 18:2n-6 but not 18:3n-3, was positively correlated with hepatocyte fatty acyl desaturation activity whereas the reverse was true at 50 weeks. The data indicate that both feedback inhibition through increased n-3HUFA and decreased C18 fatty acyl substrate concentration are probably important in determining hepatocyte fatty acyl desaturation activities, and that 18:2n-6 and 18:3n-3 may differ in their effects on this pathway

    The Effect of Chemical Information on the Spatial Distribution of Fruit Flies: I Model Results

    Get PDF
    Animal aggregation is a general phenomenon in ecological systems. Aggregations are generally considered as an evolutionary advantageous state in which members derive the benefits of protection and mate choice, balanced by the costs of limiting resources and competition. In insects, chemical information conveyance plays an important role in finding conspecifics and forming aggregations. In this study, we describe a spatio-temporal simulation model designed to explore and quantify the effects of these infochemicals, i.e., food odors and an aggregation pheromone, on the spatial distribution of a fruit fly (Drosophila melanogaster) population, where the lower and upper limit of local population size are controlled by an Allee effect and competition. We found that during the spatial expansion and strong growth of the population, the use of infochemicals had a positive effect on population size. The positive effects of reduced mortality at low population numbers outweighed the negative effects of increased mortality due to competition. At low resource densities, attraction toward infochemicals also had a positive effect on population size during recolonization of an area after a local population crash, by decreasing the mortality due to the Allee effect. However, when the whole area was colonized and the population was large, the negative effects of competition on population size were larger than the positive effects of the reduction in mortality due to the Allee effect. The use of infochemicals thus has mainly positive effects on population size and population persistence when the population is small and during the colonization of an area
    corecore