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Abstract

We consider the mixed problem,
∆u = 0 in Ω
∂u
∂ν = fN on N
u = fD on D

in a class of Lipschitz graph domains in two dimensions with Lipschitz constant
at most 1. We suppose the Dirichlet data, fD, has one derivative in Lp(D) of
the boundary and the Neumann data, fN , is in Lp(N). We find a p0 > 1 so
that for p in an interval (1, p0), we may find a unique solution to the mixed
problem and the gradient of the solution lies in Lp.

1 Introduction

The goal of this paper is to study the mixed problem (or Zaremba’s problem) for
Laplace’s equation in certain two-dimensional domains when the Neumann data

∗Research supported, in part, by the National Science Foundation.
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comes from Lp and the Dirichlet problem has one derivative in Lp. We will con-
sider both Lp with respect to arc-length, dσ and also Lp(w dσ) where the weight w is
of the form w(x) = |x|ε. By the mixed problem for Lp(w dσ), we mean the following
boundary value problem 

∆u = 0 in Ω
u = fD on D
∂u
∂ν

= fN on N
(∇u)∗ ∈ Lp(w dσ)

(1.1)

Here, (∇u)∗ is the non-tangential maximal function of the gradient (see the definition
in (2.1)). The domain Ω will be a Lipschitz graph domain. Thus, Ω = {(x1, x2) :
x2 > φ(x1)} where φ : R → R is a Lipschitz function with φ(0) = 0. We will call such
domains standard Lipschitz graph domains. The sets D and N satisfy D ∪N = ∂Ω
and D∩N = ∅. Also, we want D to be open, so that it supports Sobolev spaces. Here,
we will generally assume that fD is a function with one derivative in Lp(D,w dσ) and
that fN is in Lp(N,w dσ). Our goal is to find conditions on the data, the exponent
p and the weight w so that the problem (1.1) has a unique solution. This paper
continues the work of Sykes and Brown [4, 33, 34] to provide a partial answer to
problem 3.2.15 from Kenig’s CBMS lecture notes [20]. Our goal is to obtain Lp-
results in a class of domains that is not included in the domains studied by Sykes
[33].

We recall a few works which study the regularity of the mixed problem. In [1],
Azzam and Kreyszig established that the mixed problem has a solution in C2+α in
bounded two-dimensional domains provided that N and D meet at a sufficiently small
angle. Lieberman [23] also gives conditions which imply that the solution is Hölder
continuous. In addition, much effort has been devoted to problems in polygonal
domains, see the monograph of Grisvard [16]. Savaré [29] finds solutions in the Besov

space B
3/2
2,∞ in smooth domains. This positive result fits quite nicely with the example

below which shows that there is a solution whose gradient just misses having non-
tangential maximal function in L2(dσ). It is known that if a function is harmonic and
the non-tangential maximal function of the gradient is in L2(dσ), then the function

also belong to the Besov space B
3/2
2,2 (see the article of Fabes [12]). Recent work of

I. Mitrea and M. Mitrea [27] extend the class of spaces where we know the mixed
problem is well-posed. However, their work does not extend the class of domains
beyonds those considered in [4]. Recent work of Mazya and Rossman [24, 25, 26]
consider mixed boundary value problems for the Stokes system and the Navier Stokes
system in polyhedral domains. It would be of interest to extend the methods presented
here to other equations.

If we recall the standard tools for studying boundary value problems in Lipschitz
domains, we see that the mixed problem presents an interesting technical challenge.
On the one hand, the starting point for many results on boundary value problems
in Lipschitz domains is the Rellich identity (see Jerison and Kenig [18], for exam-
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ple). This remarkable identity provides estimates at the boundary for derivatives
of a harmonic function in L2. On the other hand, simple and well-known examples
show that the mixed problem is not solvable in L2(dσ) for smooth domains. Let
us recall an example in the upper half-space, R2

+ = {(x1, x2) : x2 > 0}. We let
N = {(x1, 0), x1 > 0}, D = {(x1, 0), x1 < 0}, and we consider the harmonic function

u(z) = Re (
√
z −

√
z + i), z = x1 + ix2.

It is easy to see that we have∣∣∣∣∂u∂ν
∣∣∣∣ ≤ C(1 + |z|)−3/2 on N,∣∣∣∣dudσ
∣∣∣∣ ≤ C(1 + |z|)−3/2 on D,

but

|∇u| ≥ C√
|z|

for |z| ≤ 1/2.

Hence, we do not have (∇u)∗ ∈ L2
loc(R, dσ). On the other hand we have (∇u)∗ ∈

Lploc(R, dσ) for all 1 ≤ p < 2.
We detour around this problem by establishing weighted estimates in L2 using the

Rellich identity. This relies on an observation of Luis Escauriaza [11] that a Rellich
identity holds when the components of the vector field are, respectively, the real
and imaginary part of a holomorphic function. Then, we imitate the arguments of
Dahlberg and Kenig [10] to establish Hardy-space estimates (with a different weight).
The weights are chosen so that interpolation will give us Lp with respect to arc-length
as an intermediate space. The weights we consider will be of the form |x|ε restricted
to the boundary of a Lipschitz graph domain. Earlier work of Shen [30] (see also §3)
gives a different approach to the study of weighted estimates for the Neumann and
regularity problems when the weight is a power.

In the result below and throughout this paper, we assume that Ω is a standard
Lipschitz graph domain and that

D = {(x1, φ(x1)) : x1 < 0} , N = {(x1, φ(x1)) : x1 ≥ 0}. (1.2)

We will call Ω with N and D as defined above, a standard Lipschitz graph domain
for the mixed problem. The Lipschitz constant of the domain, M is defined by

M = ‖φ′‖L∞(R). (1.3)

Our main result is the following.

Theorem 1.1 Let Ω be a standard Lipschitz graph domain for the mixed problem,
with Lipschitz constant M less than 1. There exists p0 = p0(M) > 1 so that for
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1 < p < p0, if fN ∈ Lp(N, dσ) and dfD/dσ ∈ Lp(D, dσ), then the mixed problem for
Lp(dσ) has a unique solution. The solution satisfies

‖(∇u)∗‖Lp(dσ) ≤ C(p,M)

‖fN‖Lp(N,dσ) +

∥∥∥∥∥dfDdσ
∥∥∥∥∥
Lp(D,dσ)

 . (1.4)

2 Preliminaries

In this section, we prove uniqueness for the weighted Lp-Neumann and regularity
problems in a Lipschitz graph domain, see (2.4) and (2.5). Here and in the sequel, we
let ν denote the outer unit normal to ∂Ω. We recall that a bounded Lipschitz domain
is a bounded domain whose boundary is parameterized by (finitely many) Lipschitz
graphs. We begin our development with an observation that we learned from Luis
Escauriaza [11].

Lemma 2.1 (L. Escauriaza) Suppose Ω is a bounded Lipschitz domain and u and
α = (α1, α2) are smooth in a neighborhood of Ω̄ with ∆u = 0 and α1+iα2 holomorphic.
Then, we have ∫

∂Ω
|∇u|2α · ν − 2

∂u

∂α

∂u

∂ν
dσ = 0.

Proof. A calculation shows that div(|∇u|2α − (2α · ∇u)∇u) = 0. Thus, the lemma
is an immediate consequence of the divergence theorem.

Remark. In the plane, it is easy to see that div(|∇u|2α − 2∇uα · ∇u) = 0 for all
harmonic functions u if and only if the vector field α is holomorphic. In fact, we may
replace harmonic by linear in the previous sentence.

Next, we recall Carleson measures and the fundamental property of these mea-
sures. The applications we have in mind are simple, but the use of Carleson measures
will allow us to appeal to a well-known geometrical argument rather than invent our
own.

Let σ be a measure on the boundary of Ω. A measure µ on Ω is said to be a
Carleson measure with respect to σ if there is a constant A so that for each x ∈ ∂Ω
and each r > 0, we have

µ(Br(x) ∩ Ω) ≤ Aσ(∆r(x)).

Here, we are using Br(x) to denote the ball (or disc) in R2 with center x and radius
r and we also use ∆r(x) = Br(x) ∩ ∂Ω to denote a ball on the boundary of Ω.

Before we can state the next result, we need a few definitions. For θ0 > 0, we
define Γ(0) = {reiθ : r > 0, |θ− π/2| < θ0} to be the sector with vertex at 0, vertical
axis and opening 2θ0. Then, we put Γ(x) = x+Γ(0), x ∈ ∂Ω. If Ω is a Lipschitz graph
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domain with constant M , then we have that Γ(x) defines a non-tangential approach
region provided θ0 < π/2− tan−1(M). We fix such a θ0 and if v is a function defined
on Ω, we define the non-tangential maximal function of v, v∗ on ∂Ω by

v∗(x) = sup
y∈Γ(x)

|v(y)| , x ∈ ∂Ω . (2.1)

We also use these sectors to define restrictions to the boundary in the sense of non-
tangential limits. For a function v in Ω, we define the restriction of v to the boundary
by

v(x) = lim
Γ(x)3y→x

v(y) , x ∈ ∂Ω (2.2)

provided the limit exists. Finally, we recall that a measure σ is a doubling measure
if there is a constant C so that for all r > 0 we have σ(∆2r(x)) ≤ Cσ(∆r(x)).

Proposition 2.2 If τ is a doubling measure on ∂Ω and µ is a Carleson measure with
respect to τ with constant A, then there exists a constant C > 0 so that∣∣∣∣∫

Ω
v dµ

∣∣∣∣ ≤ CA
∫
∂Ω
v∗ dτ.

This result is well-known. The proof in Stein [31, pp. 58–60] easily generalizes
from Lebesgue measure to doubling measures.

A simple example of a Carleson measure that will be useful to us is the following.
With R > 0 and ε > −1, define dσε and dµε by

dσε(x) = |x|εdσ(x) , x ∈ ∂Ω ; dµε(y) =
|y|ε

R
χBR(0)(y)dy , y ∈ Ω, (2.3)

where we are using dσ for arc-length measure on ∂Ω and dy for area measure in the
plane. It is not hard to see that σε is a doubling measure on ∂Ω (see Lemma 3.1) and
µε is a Carleson measure with respect to σε.

Lemma 2.3 (Rellich Identity) Let Ω be a standard Lipschitz graph domain. Given
ε > −1 and a ∈ C, we define α(z) = (Re(azε), Im(azε)). Here, z = x1 + ix2. Let σε
be as in (2.3). If u is harmonic in Ω and (∇u)∗ ∈ L2(σε), then we have∫

∂Ω
|∇u|2α · ν − 2α · ∇u∂u

∂ν
dσ = 0.

Remark. Here and in the sequel, we let ∇u(x) denote the non-tangential limit of ∇u
at x ∈ ∂Ω, see (2.2). It is well known that, with the assumptions of Lemma 2.3, the
non-tangential limit of ∇u exists a.e. x ∈ ∂Ω, see Dahlberg [9] or Jerison and Kenig
[17].
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Proof. We introduce a cut-off function ηR where ηR(y) = 1 if y ∈ BR(0), ηR(y) = 0
if |y| > 2R, and |∇ηR| ≤ C/R. For τ > 0, we define a translate of u, uτ , by
uτ (y) = u(y + τe2), where e2 = (0, 1). Note that uτ is smooth in a neighborhood of
Ω. Since Ω is a graph domain and 0 ∈ ∂Ω it follows that azε is holomorphic in Ω.
Thus, we may apply Lemma 2.1 to uτ and α. The divergence theorem now yields

∫
∂Ω

(
|∇uτ |2α · ν − 2α · ∇uτ

∂uτ
∂ν

)
ηR dσ =

∫
Ω
∇ηR ·

(
|∇uτ |2α− (2α · ∇uτ )∇uτ

)
dy

≡ IR.

The hypothesis ε > −1 is needed to justify integration by parts with the singular
vector field α. Now, using the measures defined in (2.3), Proposition 2.2 and the
definition of α we have

|IR| ≤ C
∫
∂Ω
fR(x) dσε

where fR is given by
fR(x) = sup

y∈Γ(x),|y|>R
|∇uτ (y)|2.

Notice that for each x, limR→∞ fR(x) = 0. Hence, our assumption that (∇u)∗ is in
L2(dσε) and the Lebesgue dominated convergence theorem imply that limR→∞ IR = 0.

We may now let τ → 0+ and use the dominated convergence theorem again to
obtain the lemma.

As a step towards studying the mixed problem in weighted spaces, we consider
the Neumann and regularity problems in two-dimensions. By the Neumann problem
for Lp(w dσ), we mean the problem of finding a function u which satisfies

∆u = 0 in Ω
∂u
∂ν

= fN , on ∂Ω
(∇u)∗ ∈ Lp(w dσ)

(2.4)

where, in general, we assume that fN is taken from Lp(w dσ). We also study the
regularity problem for Lp(w dσ) where we look for a function u which satisfies

∆u = 0 in Ω
u = fD, on ∂Ω
(∇u)∗ ∈ Lp(w dσ)

(2.5)

where, in general, we assume that dfD/dσ is in Lp(w dσ).
An important component in establishing uniqueness is the following local regular-

ity result for solutions with zero data.

Lemma 2.4 Suppose that ∆u = 0 in Ω, ∂u
∂ν

= 0 or u = 0 on ∂Ω and (∇u)∗ ∈
L1
loc(∂Ω). Then, for every bounded set B ⊂ Ω, we have ∇u ∈ L2(B).
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Proof. We consider the case of Neumann boundary conditions. Dirichlet boundary
conditions may be handled by a similar argument.

We first observe that since (∇u)∗ is in L1
loc(dσ), it follows that ∇u is in L1(B) for

any bounded subset of Ω, B.
Fix a point x0 ∈ ∂Ω and let η be a smooth cutoff function which is one on B2r(x0)

and zero outside of B4r(x0). We let N(z, y) be the Neumann function for Ω, thus N is
a fundamental solution which satisfies homogeneous Neumann boundary conditions.
Dahlberg and Kenig [10] construct the Neumann function on a graph domain by
reflection. At least formally, we have the representation formula,

ηu(z) =
∫
Ω∩B4r(x0)

N(z, y)(u(y)∆η(y) + 2∇u(y) · ∇η(y)) dy (2.6)

−
∫
∆4r(x0)

N(z, t)u(t)
∂η(t)

∂ν
dσ(t) , z ∈ Ω.

We now show how to estimate each term on the right-hand side of this formula.
Since (∇u)∗(x) is in L1

loc(∂Ω), it follows that u is bounded on ∆4r(x0). As we observed
above, we have ∇u ∈ L1(Ω ∩B4r(x0)), and the Poincaré inequality gives that u is in
L1(Ω ∩ B3r(x0)). We also have that the Neumann function is locally bounded when
z 6= y. Hence, the integrands in (2.6) are in L1 and it is a routine matter to justify
this formula. Since the map y → N(z, y) is in the Sobolev space W 1,2(Br(x0) ∩ Ω),
uniformly for z ∈ B3r(x0) \ B2r(x0), the estimates for u and ∇u outlined above
together with (2.6) imply that ∇u ∈ L2(Br(x0) ∩ Ω).

Next, we recall a classical fact from harmonic function theory, a Phragmen-
Lindelöf theorem. This result is well-known and may be found in Protter and Wein-
berger [28, Section 9, Theorem 18]. We will need this theorem to control the behavior
at infinity of solutions in our unbounded domains.

In the next result and below, we will let Ωϕ denote the sector

Ωϕ = {reiθ : r > 0, |θ − π/2| < ϕ}, 0 < ϕ < π . (2.7)

With this normalization, Ωϕ is a Lipschitz domain with constant M = | tan(π/2−ϕ)|.

Theorem 2.5 (Phragmen-Lindelöf) Let ϕ ∈ (0, π). Suppose v is sub-harmonic
in Ωϕ, v = 0 on ∂Ωϕ and

v(z) = o(|z|π/(2ϕ)) as |z| → +∞ , z ∈ Ωϕ .

Then v ≤ 0.

We now prove uniqueness for the regularity problem for Lp(w dσ), (2.5).
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Lemma 2.6 Let Ω be a Lipschitz graph domain with Lipschitz constant M . Suppose
that, for p ≥ 1, Lploc(w dσ) ⊂ L1

loc(dσ) and that that for all surface balls ∆r(x) with
r > 1, we have

(∫
∆r(x)

w(t)−1/(p−1) dσ(t)

) p−1
p

≤ Crπ/(2β+π), if p > 1; (2.8)(
inf

t∈∆r(x)
w(t)

)−1

≤ Crπ/(2β+π), if p = 1 (2.9)

where β = arctanM > 0. Under these conditions, if u is harmonic in Ω, (∇u)∗ ∈
Lp(w dσ) and u = 0 on ∂Ω, then u = 0 in Ω.

Proof. Since β = arctanM then we have Ω ⊂ Ωϕ̃, with ϕ̃ = β + π/2. Define v by

v(x) =

{
|u|, in Ω
0, in Ω̄c.

The function v is sub-harmonic in all of R2 and, moreover, v = 0 on ∂Ωϕ̃. We verify
the growth condition in the Phragmen-Lindelöf Theorem 2.5. To do this, suppose
that z ∈ Ωϕ̃ and set r = |z|. By Lemma 2.4 we have that ∇u is in L2 of each
bounded subset of Ω, and the same is true for ∇v. Then, by combining the mean-
value property for sub-harmonic functions with the Poincaré inequality, Proposition
2.2 (for the Carleson measure dµ(y) = 1

r
χBr(z) dy with respect to dσ, see (2.3)) and

Hölder’s inequality, in the case p > 1, we obtain

0 ≤ v(z) ≤ 1

πr2

∫
Br(z)

v(y) dy

≤ C

r

∫
Br(z)

|∇v(y)| dy

≤ C
∫
∆2r(x)

(∇u)∗(t) dσ(t)

≤ C

(∫
∆2r(x)

(∇u)∗(t)pw(t)dσ(t)

)1/p (∫
∆2r(x)

w−1/(p−1)(t) dσ(t)

) p−1
p

.

Here, x is the projection of z onto the boundary, i.e. if z = (x1, φ(x1) + t), then
x = (x1, φ(x1)). Thus, under our assumption (2.8) it follows that

0 ≤ v(z) ≤ Cr
π
2ϕ̃ ≤ C|z|

π
2ϕ̃ , z ∈ Ωϕ̃ ,

as 0 ∈ ∂Ωϕ̃. We may now apply Phragmen-Lindelöf Theorem 2.5 and conclude that
v = 0. The case p = 1 is treated in a similar fashion.
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Remark. Using Hölder’s inequality, we see that

∫
∆s(x)

|f(t)| dσ(t) ≤
(∫

∆s(x)
|f(t)|pw(t) dσ(t)

)1/p (∫
∆s(x)

w(t)−1/(p−1) dσ(t)

) p−1
p

.

Thus, we have Lploc(w dσ) ⊂ L1
loc(dσ) provided w−1/(p−1) is in L1

loc(dσ). It is easy to
see that this will hold for the weight w(t) = |t|ε if ε < p− 1.

Finally, we give uniqueness for the weighted Neumann problem for Lp(w dσ), (2.4).

Lemma 2.7 Let Ω be a Lipschitz graph domain with Lipschitz constant M . Suppose
w satisfies the hypotheses of Lemma 2.6. If u is a solution of the Neumann problem
with (∇u)∗ ∈ Lp(w dσ), p ≥ 1, and ∂u

∂ν
= 0 a.e. ∂Ω, then u is constant.

Proof. We consider v, the conjugate harmonic function to u. Since u has normal
derivative zero at the boundary, by the Cauchy-Riemann equations we have that v
is constant on the boundary, and we may assume this constant is 0. Now, (∇v)∗ ∈
Lp(w dσ) (since this is the case for u) so that v satisfies the hypotheses of Lemma 2.6
and hence it is zero. But this implies that u is constant.

3 The L2-Neumann and regularity problems with

power weights

In this section we outline the proof of existence of solutions to the Neumann problem
and the regularity problem for L2(w dσ) when the weight is a power of |x|. These
results are due to Shen [30, Theorems 1.7, 1.9]. Shen’s results are stated for bounded
domains in three dimensions. We give a few steps of the proof to indicate the minor
modifications that are needed to handle graph domains in two dimensions.

Before continuing, we record a few basic facts about the power weights |x|ε and
their relation to the Muckenhoupt class Ap(dσ). A weight (that is a non-negative
measurable and locally integrable function) w is a member of the class Ap(dσ) if and
only if for all surface balls ∆ ⊂ ∂Ω, we have

1

σ(∆)

∫
∆
w dσ

(
1

σ(∆)

∫
∆
w

−1
p−1 dσ

)p−1

≤ C.

The best constant C in this inequality is called the Ap-constant for w. The following
simple lemma tells us that |x|ε is in Ap(dσ) if and only if −1 < ε < p − 1, see [31,
p. 218].

Lemma 3.1 For ε > −1, the boundary measure σε (see (2.3)) satisfies

σε(∆r(x)) ≈ rmax(|x|, r)ε, x ∈ ∂Ω.
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The proof is omitted.
We will need the following estimates from Shen [30].

Proposition 3.2 Let Ω be a standard Lipschitz graph domain and suppose that (∇u)∗
is in L2(dσε) where 0 ≤ ε < 1. There is a constant C = C(‖φ′‖∞) so that

∫
∂Ω

(∇u)∗(x)2 dσε(x) ≤ C
∫
∂Ω

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσε (3.1)

∫
∂Ω

(∇u)∗(x)2 dσε(x) ≤ C
∫
∂Ω

∣∣∣∣∣duds
∣∣∣∣∣
2

dσε (3.2)

Proof. The arguments of Shen [30, Theorem 1.7 and 1.9] carry over with minor
changes to graph domains in two dimensions. The estimates for the Neumann function
in Shen’s work (see (3.2) on page 2850 of [30]) may be proven in graph domains using
the ideas of Dahlberg and Kenig [10]. Also, see the argument below where we establish
the estimate (6.6) for the Green’s function for the mixed problem.

Remark. Estimate (3.1) for the regularity problem holds for a larger class of weights
than power weights. Estimate (3.2) for the Neumann problem is only known to hold
for power weights.

We conclude this section with the following result which is a minor modification
of results in [30].

Theorem 3.3 (Z. Shen) Let Ω be a standard Lipschitz graph domain with ‖φ′‖∞ <
∞. For ε satisfying 0 ≤ ε < 1 and for σε as in (2.3), we have that the Neumann
problem (2.4) and the regularity problem (2.5) for L2(dσε) are uniquely solvable.

Proof. We apply the method of layer potentials as in Verchota [35]. Note that
for ε ∈ (−1, 1), |x|ε is an A2(dσ) weight so that singular integrals are bounded on
L2(∂Ω, dσε). The estimates of Proposition 3.2 imply that

∫
∂Ω

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

dσε ≈
∫
∂Ω

∣∣∣∣∣dudσ
∣∣∣∣∣
2

dσε , (3.3)

if u is harmonic in Ω with (∇u)∗ ∈ L2(dσε) and 0 ≤ ε < 1. The Neumann
and regularity problems in half-space may be solved using the potential S(f)(x) =
1
π

∫
R log |x − y|f(y) dσ(y). The estimate (3.3) and the method of continuity (see

Brown [4, Lemma 1.16] and Gilbarg and Trudinger [15, Theorem 5.2]) now lead to
the existence of a solution in general graph domains.

Uniqueness follows from Lemma 2.6 or 2.7 as it is easy to check that the measure
dσε satisfies the growth condition of Lemma 2.6.
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4 The mixed problem in L2 with power weights.

The main result of this section is Theorem 4.6 where we prove existence and unique-
ness for the solutions of the weighted mixed problem in L2 on a Lipschitz graph
domain. There will be a restriction on the size of the Lipschitz constant (see Lemma
4.1). We first discuss the case when the measure is arc-length. The key estimate is
obtained using the Rellich identity with a vector field α so that α · ν changes sign
as we move from D to N . This technique is applied to the mixed problem in [4]. A
similar technique is applied to a question about the wave equation by Lagnese [22].
This earlier work requires the domain to be smooth and thus the sets N and D must
consist of connected components of the boundary.

Lemma 4.1 (Rellich Estimates for the mixed problem with w = 1) Let Ω =
{x2 > φ(x1)}, N , D be a standard Lipschitz graph domain for the mixed problem, see
(1.2). Suppose that φx1 > δ > 0 on N and φx1 < −δ < 0 on D.

Then, if u is harmonic in Ω and (∇u)∗ ∈ L2(∂Ω, dσ), we have

∫
D

(
du

dσ

)2

dσ +
∫
N

(
∂u

∂ν

)2

dσ ≈
∫
N

(
du

dσ

)2

dσ +
∫
D

(
∂u

∂ν

)2

dσ. (4.1)

Proof. The proof follows from the Rellich identity with vector field α = e1, see Brown
[4, Lemma 1.7].

Theorem 4.2 (Mixed problem in L2(dσ)) Let δ > 0 and Ω, N , D be a standard
Lipschitz graph domain for the mixed problem, see (1.2). Suppose that φx1 > δ > 0
on N and φx1 < −δ < 0 on D. Then, if gN ∈ L2(N, dσ) and dgD/dσ ∈ L2(D, dσ),
there exists a unique solution of the mixed problem (1.1) for L2(dσ) in Ω. Moreover,
the solution v satisfies

‖(∇v)∗‖L2(dσ) ≤ C

(
‖dgD
dσ

‖L2(D,dσ) + ‖gN‖L2(N,dσ)

)
. (4.2)

Remark. In particular, we have that the mixed problem with w = 1 is uniquely
solvable (with estimates for (∇v)∗) in all convex sectors Ωψ, 0 < ψ < π/2, see (2.7).

Proof. This is an extension of the results of Brown [4] to two dimensions and to
Lipschitz graph domains. The first step is to observe that the equivalence (4.1)
quickly leads to uniqueness. For if u is a solution of (1.1) with u = 0 on D and ∂u

∂ν
= 0

on N , then (4.1) implies u = 0 on ∂Ω. Lemma 2.6 now yields u = 0 in Ω.
To prove existence, we first find solutions in a sector. This is easy by symmetry and

can be done as in Brown [4, Lemma 1.16]. Then we may use the method of continuity
and again (4.1) to establish solutions in more general Lipschitz graph domains.

11



We now turn our attention to the weighted mixed problem in sectors that are not
convex. For the boundary of a sector Ωϕ as in (2.7), we write: ∂Ωϕ = Dϕ ∪Nϕ, with
D and N as in (1.2).

Proposition 4.3 (Weighted mixed problem on sectors) Let ϕ ∈ (π/2, π) and
suppose that 1 − π

2ϕ
< ε < 1. Let σε be as in (2.3). Then, if fN ∈ L2(Nϕ, dσε) and

dfD/dσ ∈ L2(Dϕ, dσε), there exists a unique solution u of the mixed problem
∆u = 0 in Ωϕ

u = fD on Dϕ
∂u
∂ν

= fN on Nϕ

(∇u)∗ ∈ L2(∂Ωϕ, dσε).

(4.3)

Moreover, u satisfies

∫
∂Ωϕ

(∇u)∗(x)2 dσε ≤ C

∫
Nϕ

|fN(x)|2 dσε +
∫
Dϕ

∣∣∣∣∣dfDdσ (x)

∣∣∣∣∣
2

dσε

 (4.4)

Proof. We use a conformal map to reduce the weighted mixed problem (4.3) to the
mixed problem with weight w = 1 on a convex sector, then we apply Theorem 4.2.

Let s = 1− ε with ε as in the hypothesis, so that we have

0 < s < π/2ϕ < 1. (4.5)

Define hs(z) to be the conformal map

η = hs(z) = i(−iz)s.

Thus, hs maps Ωϕ to Ωsϕ, Dϕ to Dsϕ and Nϕ to Nsϕ. Note that if we let ∂hs denote
the complex derivative of hs, that is

∂hs =
1

2

(
∂hs
∂x1

+
1

i

∂hs
∂x2

)
(4.6)

we have
1

|∂hs|
dσ =

1

s
dσε . (4.7)

On account of (4.5) it follows that Ωsϕ is a convex sector and thus Theorem 4.2 applies
to Ωsϕ.

Given fD and fN as in (4.3), we define gD and gN on ∂Ωsϕ as follows:

gN(η) =
fN
|∂hs|

◦ h−1
s (η) ; gD(η) = fD ◦ h−1

s (η).
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We verify that gN and gD satisfy the hypotheses of Theorem 4.2. Indeed, it is imme-
diate to see that ∫

Nsϕ

|gN |2dσ =
1

s

∫
Nϕ

|fN |2dσε . (4.8)

Similarly, we have ∫
Nsϕ

∣∣∣∣∣dgDdσ
∣∣∣∣∣
2

dσ =
1

s

∫
Nϕ

∣∣∣∣∣dfDdσ
∣∣∣∣∣
2

dσε . (4.9)

By Theorem 4.2 the mixed problem in L2(dσ) on Ωsϕ has a unique solution v
which satisfies (4.2). We now pull this solution back to Ωϕ by defining u = v ◦ hs.
Then, u is harmonic in Ωϕ and satisfies:

u = fD on Dϕ ;
∂u

∂ν
= fN on Nϕ .

Moreover, on account of (4.2), (4.8) and (4.9) we have

‖(∇v)∗‖L2(∂Ωsϕ ,dσ) ≤ C
∫
Nϕ

|fN(x)|2 dσε +
∫
Dϕ

∣∣∣∣∣dfDds (x)

∣∣∣∣∣
2

dσε. (4.10)

Now we consider non-tangential maximal function estimates for ∇u. We apply
the Cauchy integral formula to the complex derivative of u (which is analytic in Ωϕ)
and obtain:

∂u(z) =
1

2πi

∫
∂Ωϕ

∂u(ζ)

z − ζ
dζ =

1

2πi

∫
∂Ωϕ

∂hs(ζ)∂v(hs(ζ))

z − ζ
dζ , z ∈ Ωϕ .

It follows

(∇u)∗(x) = 2(∂u)∗(x) ≤
(
Kϕ(∂hs · (∂v) ◦ hs)

)∗
(x) , a.e. x ∈ ∂Ωϕ ,

where Kϕ denotes the Cauchy integral on Ωϕ. By the theorem of Coifman, McIntosh
and Meyer [7] on the boundedness of the Cauchy integral we have

‖(Kϕψ)∗‖L2(∂Ωϕ,dσε) ≤ C‖ψ‖L2(∂Ωϕ,dσε).

This uses that dσε is in A2(dσ). Combining these last two inequalities we obtain

‖(∇u)∗‖L2(∂Ωϕ,dσε) ≤ C‖∂hs · (∂v) ◦ hs)‖L2(∂Ωϕ,dσε) = C‖∂v‖L2(∂Ωsϕ,dσ) , (4.11)

where the last equality was obtained by performing the change of variables hs(ζ) = η,
see also (4.7). This, together with (4.10) yields (4.4).

The argument is reversible, so we may conclude uniqueness in Ωϕ from uniqueness
in Ωsϕ.
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Remark. It is well-known that non-tangential maximal function estimates for har-
monic functions behave nicely under conformal mapping, see Kenig [19] and Jerison
and Kenig [17]. The previous Lemma, however, considers the non-tangential maximal
function of the gradient. The estimates in this case appear to be more involved.

We now construct holomorphic vector fields which allow us to use the Rellich
identity of Lemma 2.3 to obtain Rellich estimates for the weighted mixed problem.

Lemma 4.4 Suppose Ω = {x2 > φ(x1)}, N,D is a standard Lipschitz graph domain
for the mixed problem, with Lipschitz constant M . Let β = arctanM > 0. Assume
β < π/4.

Then, for 2β/(π − 2β) < ε < 1 there exist β0 = β0(ε,M), β < β0 < (π − 2β)/2,
and a complex number a = eiλ such that the vector field α(z) = (Re(azε), Im(azε))
satisfies

−|x|ε ≤ α(x) · ν(x) < −|x|ε sin(β0 − β) , x ∈ N ; (4.12)

|x|ε ≥ α(x) · ν(x) > |x|ε sin(β0 − β) , x ∈ D. (4.13)

Proof. The outer unit normal ν lies in {(cosϕ, sinϕ) : −π/2−β ≤ ϕ ≤ −π/2+β}.
On account of (1.2) and (1.3) we have that N is contained in the sector {x = reiθ :
−β < θ < β}, whereas D is contained in {x = reiθ : π − β < θ < π + β}.
Thus, in order to have α · ν < 0 on N we need α/|α| = (cosψ, sinψ) for some
ψ ∈ (−2π+β,−π−β), whereas α ·ν > 0 on D requires ψ ∈ (−π+β,−β). To obtain
a strictly negative upper bound for α · ν on N and a strictly positive lower bound for
α · ν on D, we pick β0 (to be selected later) so that β < β0 < π/2 and then, with
the same notations as above, require that, for x = reiθ ∈ N , ψ(θ) lie in [β0, π − β0]
whereas, for x ∈ D, we require that ψ(θ) lie in [π + β0, 2π − β0]. To this end, given ε
as in the hypothesis, we let let ψ(θ) be a linear function with slope ε, and we choose
β0 so that ψ(β) = π − β0 and ψ(π − β) = π + β0. Writing ψ(θ) = εθ + λ, we define
α(z) = eiλzε, that is

α(reiθ) = rεeiψ(θ)

where λ = π − πβ0/(π − 2β) and ε = 2β0/(π − 2β) (note that the latter defines
β0). This construction, however, grants that α · ν has the desired sign only near the
endpoints θ = β (for N) and θ = π−β (for D). In order to make sure that α ·ν keeps
the desired sign all the way through the two other endpoints we need to restrict the
range for the selection of β0 to:

β < β0 <
π

2
− β .

Then the angle between α(x) and ν(x) will lie in the intervals (−3π/2 + (β0 −
β),−π/2 − (β0 − β)), for x ∈ N , and in (−π/2 + (β0 − β), π/2 − (β0 − β)), for
x ∈ D, so that (4.12) and (4.13) hold.
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Proposition 4.5 (Weighted Rellich estimates for the mixed problem) Let Ω,
N , D be a standard Lipschitz graph domain for the mixed problem (1.1), with Lips-
chitz constant M < 1. Let β = arctanM . Then, for σε as in (2.3), for ε in the range
2β/(π − 2β) < ε < 1 and for u harmonic with (∇u)∗ ∈ L2(dσε), we have∫

∂Ω
(∇u)∗(x)2 dσε ≤ C

∫
N

(
∂u

∂ν

)2

dσε +
∫
D

(
du

dσ

)2

dσε

 .
Proof. The identity of Lemma 2.3 together with the vector field constructed in
Lemma 4.4 and standard manipulations involving the boundary terms as in Brown
[4, Lemma 1.7] yield the estimate∫

∂Ω
|∇u|(x)2 dσε ≤ C

∫
N

(
∂u

∂ν

)2

dσε +
∫
D

(
du

dσ

)2

dσε

 .
The key point is that since α ·ν changes sign as we pass from N to D, we can estimate
the full gradient of u on the boundary by the data for the mixed problem.

In order to obtain the estimate for the non-tangential maximal function of ∇u,
we argue as in Proposition 4.3. We may represent the holomorphic function ∂u using
the Cauchy kernel

∂u(x) =
1

2πi

∫
∂Ω

∂u(y)

x− y
dy. (4.14)

Since σε is an A2 weight with respect to σ for −1 < ε < 1, the theorem of Coifman,
McIntosh and Meyer [7] implies the non-tangential maximal estimate ‖(∂u)∗‖L2(σε) ≤
C‖∂u‖L2(σε). The estimate of the proposition follows from this and the corresponding
estimate for ∂̄u.

Theorem 4.6 (Mixed problem in L2(σε)) Suppose Ω, N and D is a standard
Lipschitz graph domain for the mixed problem with Lipschitz constant M < 1. Let
β = arctan(M). Given ε which satisfies

2β/(π − 2β) < ε < 1,

there is a unique solution u to the L2(dσε) mixed problem (1.1). Moreover, u satisfies∫
∂Ω

(∇u)∗(x)2 dσε ≤

∫
D

∣∣∣∣∣dfDdσ
∣∣∣∣∣
2

dσε +
∫
N
|fN |2 dσε

 .
Proof. Using the estimate of Proposition 4.5, the existence result for sectors in
Proposition 4.3, and the method of continuity (see Brown [4, Lemma 1.16] and Gilbarg
and Trudinger [15, Theorem 5.2]), we obtain the existence of a solution to the mixed
problem with data in L2(dσε).

Next, we consider uniqueness. If u is a solution of the mixed problem with zero
data, then the Rellich estimates or Proposition 4.5 imply that u is a solution of
the regularity and Neumann problems for L2(dσε) with zero data. By the results in
Section 2 it follows that u is zero.
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5 The regularity and Neumann problems in H1(dσε).

In this section we assert the existence of solutions for the Neumann problem when the
data is in H1(dσε), and for the regularity problem when the data has one derivative
in H1(dσε). The proof of these results follows the work of Dahlberg and Kenig [10];
thus, we shall be brief. We first recall the definition of the Hardy spaces H1(dσε) and
H1,1(dσε).

Let ε > −1. We say that a is an H1(dσε)-atom for ∂Ω if a is supported on a
surface ball ∆s(x),

∫
a dσ = 0 and ‖a‖∞ ≤ [σε(∆s(x))]

−1. We remark that for ε ≤ 0,
L1(dσε) ⊂ L1

loc(dσ). Thus we define the space H1(dσε), for ε ≤ 0, to be the collection
of functions that are represented as

f(x) =
∞∑
j=1

λjaj(x) (5.1)

where {aj}j∈N is a sequence of H1(dσε)-atoms for ∂Ω and the coefficients {λj} satisfy∑∞
j=1 |λj| < ∞. The sum for f in (5.1) converges in L1(dσε). the sum converges in

L1(dσε). The H1(dσε)-norm is defined by

‖f‖H1(dσε) = inf{
∑

|λj|} (5.2)

where the infimum is taken over all possible representations of f . Note that while
H1(dσε)-atoms are defined for ε > −1, we consider (and need for our application in
Theorem 7.2) the space H1(dσε) only for ε ≤ 0. This allows us to avoid having to
define spaces of distributions on Lipschitz graph domains. (See Coifman and Weiss
[8] or Stromberg and Torchinsky [32] for a discussion of these spaces.)

Let ε ≤ 0. We say that A is an H1,1(dσε)-atom for ∂Ω if for some x0 in ∂Ω

A(x) =
∫ x

x0

a(t)dσ(t), x ∈ ∂Ω

where a is an H1(dσε)-atom, and
∫ x
x0

denotes integration along the portion of the
boundary ∂Ω with endpoints x0 and x. Given an H1(dσε)-atom a, the integral above
defines A uniquely up to an additive constant. For ε ≤ 0, we define the spaceH1,1(dσε)
to be sums of the form

F (x) =
∞∑
j=1

λjAj(x)

where the coefficients satisfy
∑∞
j=1 |λj| <∞. The norm of F in H1,1(σε′), ‖F‖H1,1(dσε),

is defined to be the infimum of
∑∞
j=1 |λj| over all possible representations of F as sums

of atoms. If we choose the base point x0 for each atom to be zero, then we have that
the sum defining F converges in the norm given by

sup |x|−ε|F (x)|.
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Furthermore, it is easy to see that we have

‖F‖H1,1(dσε) = ‖dF
dσ
‖H1(dσε).

By the Neumann problem for H1(dσε) we mean the Neumann problem for L1(dσε),
see (2.4), where the data fN is now taken from H1(dσε). By the regularity problem
for H1,1(dσε) we mean the regularity problem for L1(dσε), see (2.5), where the data
fD is taken from H1,1(dσε).

For future reference, we also define spaces on subsets of the boundary. A function
f is in H1(N, dσε) if and only if f is the restriction to N of a function in H1(dσε).
Such functions can be written as sums of atoms that are restrictions to N of H1(dσε)-
atoms for ∂Ω. The space H1,1(D, dσε) is defined in a similar fashion. See Chang,
Krantz and Stein [6], Sykes [33], and Sykes and Brown [34] for additional works that
study Hardy spaces on domains.

The main result of this section is the following theorem. We omit the proof since
it is quite similar to the argument for the mixed problem in the following section
(Theorem 7.2).

Theorem 5.1 Let Ω be a standard Lipschitz graph domain with Lipschitz constant
M and let ε0(M) < ε′ ≤ 0 be small. Then the H1(dσε′)-Neumann and the H1,1(dσε′)-
regularity problems are uniquely solvable. The solutions satisfy, respectively,

‖u‖H1,1(dσε′ )
+
∫
∂Ω

(∇u)∗(x) dσε′ ≤ C

∥∥∥∥∥∂u∂ν
∥∥∥∥∥
H1(dσε′ )∥∥∥∥∥∂u∂ν

∥∥∥∥∥
H1(dσε′ )

+
∫
∂Ω

(∇u)∗(x) dσε′ ≤ C‖u‖H1,1(dσε′ )
.

Remark. We do not assert uniqueness when ε′ > 0. In the rest of this paper, we will
only use the existence of a solution for the H1(dσε′)-Neumann problem in the case
when ε′ ≤ 0. (In order to fully treat the case ε′ > 0, one needs to give a different
definition of the normal derivative at the boundary. For ε′ > 0 the H1(dσε′)-boundary
data may not be in L1

loc(dσ) and hence fail to be a function. See Brown [5] and Fabes,
Mendez and Mitrea [13] for a treatment of the Neumann problem with data which is
not locally integrable).

6 The mixed problem in H1 with power weights.

By the mixed problem for H1(dσε′) we mean the mixed problem for L1(dσε′), see (1.1),
where the Dirichlet data fD is taken from H1,1(D, dσε′) and the Neumann data fN is
in H1(N, dσε′). In this section, we consider the mixed problem where the Neumann
data is an H1(N, dσε′) atom and the Dirichlet data is zero. Since atoms lie in L2(dσε)
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for ε > −1, Theorem 4.6 yields existence and uniqueness of the solution to the mixed
problem for L2(dσε) with these data. Our first goal is to show that the gradient of
the solution also has non-tangential maximal function in L1(dσε′), for ε′ near zero.

Theorem 6.1 Suppose Ω, N , D is a standard Lipschitz graph domain for the mixed
problem with Lipschitz constant M < 1 and set β = tan−1M . Then, there is δ =
δ(M) with 1 > δ > 0 so that, for ε′ satisfying 4β−π

2(π−2β)
< ε′ < δ we may solve the

mixed problem (1.1) for H1(dσε′) with zero Dirichlet data and with Neumann data an
H1(N, dσε′)-atom, a. The solution u satisfies the estimate∫

∂Ω
(∇u)∗(x) dσε′ ≤ C(M, ε′) . (6.1)

In addition, we have

‖u‖H1,1(dσε′ )
+

∥∥∥∥∥∂u∂ν
∥∥∥∥∥
H1(dσε′ )

≤ C(M, ε′). (6.2)

As a step towards the proof of Theorem 6.1, we construct a Green’s function
for the mixed problem using the method of reflections–an old idea that was used by
Dahlberg and Kenig [10] to obtain a similar result for the Neumann and regularity
problems. The estimates for the Green’s function are a consequence of the Hölder
regularity of weak solutions of divergence-form equations with bounded measurable
coefficients.

We begin by constructing a bi-Lipschitz map, Φ : R2 → R2 with Φ(Ω) = Q
where Q is the first quadrant, Q = {(x1, x2) : x1 > 0, x2 > 0}. We also require that
Φ(N) = {(x1, x2) : x1 ≥ 0, x2 = 0} and Φ(D) = {(x1, x2) : x1 = 0, x2 > 0}. On Q
we now define the operator L = divA∇ where the coefficient matrix A has bounded
entries (these are first-order derivatives of Φ), so that u satisfies

∆u = 0, in Ω
∂u
∂ν

= fN , on N
u = fD, on D

if and only if the function v defined by v = u ◦ Φ−1 satisfies
Lv = 0, in Q
A∇v · ν = fN ◦ Φ−1 on Φ(N)
v = fD ◦ Φ−1 on Φ(D)

Now, we extend the coefficients of L by reflection, so that Lv = 0 if and only if L(v ◦
Rj) = 0 where R1 and R2 are the reflections R1(x1, x2) = (−x1, x2) and R2(x1, x2) =
(x1,−x2). Next, letting G denote the Green’s function for L in Q, we set

N (z, w) = G(z, w)−G(z, R1w) +G(z, R2w)−G(z, R1R2w) , z, w ∈ Q
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and observe that N is a Green’s function for the mixed problem for L in Q. Recall
that we may find a Green’s function for L in Q which satisfies

|G(z, w)| ≤ C(1 + | log |z − w||) , z, w ∈ Q,

see Kenig and Ni [21]. We then observe that if |z − ζ| = 1 and |ζ − w| < 1/2, then
|G(z, ζ)−G(z, w)| ≤ C|ζ −w|δ, where 0 < δ < 1, δ = δ(M). This is a standard esti-
mate of Hölder continuity for solutions of divergence-form elliptic operators. Finally,
by rescaling, we obtain

|G(z, ζ)−G(z, w)| ≤ C

(
|ζ − w|
|z − ζ|

)δ
, if |ζ − w| < 1

2
|z − ζ|. (6.3)

The latter immediately implies the same estimate for N in Q, namely

|N (z, ζ)−N (z, w)| ≤ C

(
|ζ − w|
|z − ζ|

)δ
if z, ζ, w ∈ Q and |ζ − w| < 1

2
|z − ζ| (6.4)

We will need an additional estimate for N (z, ζ) when ζ ∈ Q is near Φ(D). Since
we have N (z, x) = 0 if z ∈ Q and x ∈ Φ(D), it follows by continuity that N is small
near Φ(D). More precisely, let ζ ∈ Q and suppose that x̂ is a point on Φ(D) for
which |x̂− ζ| = dist(ζ,Φ(D)). For z ∈ Q, we have N (z, x̂) = 0 and (6.4) implies

|N (z, ζ)| ≤ C
|ζ|δ

|z − ζ|δ
, if z, ζ ∈ Q and dist(ζ,D) <

1

2
|z − ζ|, (6.5)

(here we have used that 0 ∈ ∂Q). Finally, we define the Green’s function for the
mixed problem by

M(x, y) = N (Φ(x),Φ(y)).

Since Φ is bi-Lipschitz the estimates (6.4) and (6.5) imply similar results for M in Ω:

|M(x, ζ)−M(z, w)| ≤ C

(
|ζ − w|
|z − ζ|

)δ
,

if z, ζ, w ∈ Ω̄ with |ζ − w| < 1

2
|z − ζ| (6.6)

|M(z, ζ)| ≤ C
|ζ|δ

|z − ζ|δ

ifz, ζ ∈ Ω and dist(ζ,D) <
1

2
|z − ζ|. (6.7)

These estimates are a key ingredient in the study of the behavior of the solution
of the mixed problem with atomic Neumann data.
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Lemma 6.2 Assume ε′ > −1. Let u be a solution of the mixed problem (1.1) for
L1(dσε′), where the Neumann data is an H1(N, dσε′)-atom, a, and the Dirichlet data
is zero. Then, for any integer k ≥ 1, u satisfies

|u(z)| ≤ C
ρδ

|z − xa|δ
σ(∆ρ(xa))

σε′(∆ρ(xa))
, z ∈ Ω , |z − xa| ≥ 2kρ.

Here, 0 < δ < 1 is as in the estimate for the Green’s function for the mixed problem
(6.3) and ∆ρ(xa) is the surface ball where a is supported.

Proof. We consider two cases: 1) ∆ρ(xa) ⊂ N and 2) ∆ρ(xa) ∩D 6= ∅.
In case 1), we have

u(z) =
∫
N
M(z, x)a(x) dσ(x) =

∫
N

(M(z, x)−M(z, xa))a(x) dσ(x) , z ∈ Ω

where the second identity uses the fact that the atom a has mean value zero. Next,
we use the continuity of M from (6.6) to obtain

|u(z)| ≤ C
ρδ

|z − xa|δ
∫
N
|a| dσ, for z ∈ Ω , |z − xa| > 2kρ. (6.8)

Finally, the normalization of a in the definition of an atom implies that∫
N
|a| dσ ≤ σ(∆ρ(xa))

σε′(∆ρ(xa))
.

This completes the proof in case 1.
In case 2), we do not have

∫
N a dσ = 0. However, estimate (6.7) yields

|u(z)| ≤ C
ρδ

|z − xa|δ
∫
N
|a| dσ ,

and then we use the normalization of a to conclude the proof.

Before proceeding, we need a few technical results. In this Lemma and below,
given a point xa ∈ ∂Ω, we consider a ball Bρ(xa) and a boundary ball ∆ρ(xa), and
set: Rk = B2k+1ρ(xa) \ B2kρ(xa), R̃k = B2k+2ρ(xa) \ B2k−1ρ(xa), ∆k = ∆2kρ(xa) and
Σk = ∆k+1 \∆k. With these definitions, we can now state

Lemma 6.3 Let λ ∈ R and set α(z) = (Re(eiλ(z)ε), Im(eiλ(z)ε)). Then, we have∫
Rk

|α|p dy ≤ C2kρ
∫
Σk

|α|p dσ ≤ C2kρσεp(Σk)

provided εp > −1.

Proof. The proof is a computation and we omit the details.
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We now take a brief detour to discuss solutions of the mixed problem in the energy
sense. Let B be a ball with center in Ω. We say that u is an energy solution of the
mixed problem in B, 

∆u = 0 in B ∩ Ω
u = 0 on D ∩B
∂u
∂ν

= 0 on N ∩B
if u lies in the Sobolev space W 1,2(B ∩Ω), u vanishes on D ∩B and for every v that
lies in W 1,2(B ∩ Ω) and vanishes on ∂(B ∩ Ω) \N we have∫

B∩Ω
∇u · ∇v dy = 0.

Using a Carleson measure argument, see Proposition 2.2, it is not difficult to see that
if u is a solution of the mixed problem in L2(dσε) then |∇u|2 is integrable on bounded
subsets of Ω, provided ε < 1. This shows that a solution for the mixed problem in
L2(dσε) is, in particular, an energy solution.

In the next lemma, we use −
∫
E f dx to denote the average,

−
∫
E f(x) dx := |E|−1

∫
E f(x) dx.

Lemma 6.4 Let Ω, D, N be a standard Lipschitz graph domain for the mixed problem
with Lipschitz constant M . There is an exponent q0 = q0(M) > 2 so that on any ball
B with center in Ω, if u is an energy solution of

∆u = 0, in 2B ∩ Ω
u = 0, in D ∩ 2B
∂u
∂ν

= 0, on N ∩ 2B

then, for all 1 ≤ q ≤ q0, we have(
−
∫
B∩Ω

|∇u|q dx
)1/q

≤ C

r

(
−
∫
2B∩Ω

|u|2 dx
)1/2

,

where r is the radius of B.

Proof. This follows from the Caccioppoli inequality and a reverse Hölder inequality
as in Giaquinta [14].

The next estimate gives the decay at infinity of a solution to the mixed problem
with atomic data.

Lemma 6.5 Let Ω, D, N be a standard Lipschitz graph domain for the mixed problem
(1.1). Let ε′ > −1 and −1 + 2/q0 < ε < 1, where q0 is as in Lemma 6.4. If u is a
solution of the mixed problem for L2(dσε) with zero Dirichlet data and with Neumann
data a σε′-atom, a, which is supported in ∆ρ(xa), then we have

∫
Σk

|∇u|2 dσε ≤ C
σε(Σk)

(2kρ)2

 sup
∪|j|≤1R̃k+j

|u|

2

, for all k ≥ 2 .
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Proof. Let ηk ≥ 0 be a smooth cutoff function which equals one on Rk, is zero
outside R̃k, and satisfies |∇η| ≤ C/(2kρ). We let α denote a vector field of the form
α(z) = (Re(eiλzε), Im(eiλzε)), for some λ ∈ R and for ε as in the hypothesis.

We apply the Rellich identity with vector field αηk where α is as in Lemma 4.4 to
conclude that for k ≥ 2, we have∫

Σk

|∇u|2 dσε ≤
C

2kρ

∫
R̃k

|∇u|2|α|dy. (6.9)

(this uses that the mixed data of u is zero on the support of ηk when k ≥ 2).
Applying Hölder’s inequality we obtain

∫
R̃k

|∇u|2|α| dy ≤
(∫

R̃k

|∇u|2p dx
)1/p (∫

R̃k

|α|p′ dy
)1/p′

, (6.10)

where 1/p+ 1/p′ = 1 and p lies in the interval 1/(1− |ε|) < p ≤ q0/2 (if −1 + 2/q0 <
ε < 0) or, if ε > 0, 1 ≤ p ≤ q0/2. These conditions grant that Lemmata 6.4, 6.3 and
3.1 apply in what follows. We now cover R̃k with a (fixed) number of balls Bk,n (each
centered at a point in Ω), n = 1, ...,m, such that diamBk,n ≈ 2kρ and

R̃k ⊆ ∪mn=1Bk,n ⊆ ∪|j|≤2Rk+j = ∪|j|≤1R̃k+j .

By Lemma 6.4, for p as above, we have(∫
R̃k

|∇u|2p dy
)1/p

≤ C(2kρ)
2
p
−4

∑
|j|≤1

∫
R̃k+j

|u|2 dy.

Moreover, Lemma 6.3 and Lemma 3.1, also for p as above, imply

(∫
R̃k

|α|p′ dy
)1/p′

≤ C(2kρ)1− 2
pσε(Σk). (6.11)

Combining (6.9) to (6.11), we obtain∫
Σk

|∇u|2 dσε ≤ C

2kρ
(2kρ)

2
p
−4(2kρ)1− 2

pσε(Σk)
∑
|j|≤1

∫
R̃k+j

|u|2 dx

≤ Cσε(Σk)(2
kρ)−2

 sup
x∈∪|j|≤1R̃k+j

|u|

2

.
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Lemma 6.6 Let Ω, N,D be a standard Lipschitz graph domain for the mixed prob-
lem. Suppose u is the solution of the mixed problem for L2(dσε), see (1.1), with zero
Dirichlet data and with Neumann data an H1(N, dσε′)-atom, a, supported in a surface
ball ∆ρ(xa). Let ε′ > −1 and −1 + 2/q0 < ε < 1 (with q0 as in Lemma 6.4). Then,
for all integers k ≥ 5 we have∫

Σk

(∇u)∗(x)2 dσε ≤
Cσε(Σk)

22k(1+δ)(σε′(∆ρ(xa)))2
,

where δ is as in (6.3).

Proof. By Lemmata 6.2 and 6.5, we have

∫
Σk

|∇u|2 dσε ≤ C

(2kρ)2
σε(Σk)

(
ρδ

(2kρ)δ
σ(∆ρ(xa))

σε′(∆ρ(xa))

)2

=
C

(2kρ)2
σε(Σk)2

−2kδ

(
ρ

σε′(∆ρ(xa))

)2

. (6.12)

In order to pass from the estimate above for ∇u to an estimate for (∇u)∗ , we use
the Cauchy kernel to represent ∂u, the complex derivative of u, see (4.6). To carry
out this argument, we consider a cutoff function ηk that is supported in B2k+4ρ(xa) \
B2k−3ρ(xa), equals one on B2k+3ρ(xa) \B2k−2ρ(xa) and, furthermore, satisfies: |∂ηk| ≤
C/2kρ. On account of the analyticity of ∂u, the Cauchy-Pompeiu formula, see e.g.
Bell [2], yields

ηk(z)∂u(z) = K∂Ω(ηk∂u)(z) + I(z), z ∈ Ω, (6.13)

where we have set

K∂Ω(ηk∂u)(z) =
1

2πi

∫
∂Ω

1

z − ζ
ηk(ζ)∂u(ζ) dζ , z ∈ Ω, (6.14)

(here, dζ denotes complex line integration) and

I(z) =
1

π

∫
Rk−2∪Rk+3

1

z − y
∂̄ηk(y)∂u(y) dy, z ∈ Ω (6.15)

(here, dy denotes area measure in the plane).
Next, for x ∈ Σk we decompose the sector Γ(x) = Γn(x) ∪ Γf (x) where Γn(x) =

Γ(x) ∩ Bκ2kρ(xa), Γf (x) = Γ(x) \ Bκ2kρ(xa), and the constant κ is chosen so that
Γn(x) ⊂ ∪|j|≤1Rk+j for x ∈ Σk. If we let v∗n(x) denote the supremum of |v| on Γn(x)
and similarly for v∗f , using (6.13) and the theorem of Coifman, McIntosh and Meyer
[7] we obtain∫

Σk

(∇u)∗n(x)2 dσε(x) =
∫
Σk

(∂u)∗n(x)
2 dσε(x) (6.16)
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≤
∑
|j|≤3

∫
Σk+j

|∂u(x)|2 dσε(x)

+σε(Σk)

 sup
x∈Σk

 sup
z∈∪|j|≤1Rk+j

|I(z)|

2
 ,

where we have used that supp ηk ⊂ ∪|j|≤3Rk+j.
We now estimate the term I(z): by the Cauchy-Schwartz inequality we have

|I(z)| ≤ C

ρ2k−1

( ∫
Rk−3∪Rk+3

|∇u|2 dy
) 1

2

, z ∈ ∪|j|≤1Rk+j .

On account of the vanishing boundary conditions on u and ∂u/∂ν we may now apply
Caccioppoli inequality and conclude

I(z) ≤ 1

2kρ
sup

y∈∪|j|≤4Rk+j

|u(y)| for all z ∈ ∪|j|≤1Rk+j and x ∈ Σk .

Using interior estimates, we also obtain

(∇u)∗f (x) ≤
1

2kρ
sup

z∈Ω\B
2k−1ρ

|u(z)| , x ∈ Σk .

The conclusion now follows from (6.12), (6.16) and Lemma 6.2.

We are ready to prove Theorem 6.1.

Proof of Theorem 6.1. We fix ε > 0 such that 2β/(π − 2β) < ε < 1 so that, for ε′

as in the hypotheses we have: (ε − 1)/2 < ε′. The proof is based on the following
elementary observations: given any ε′ > −1 and ε > −1, if a is a σε′-atom then a lies
in L2(N, dσε); by Theorem 4.6 we may solve the mixed problem (1.1) for L2(dσε) with
Neumann data a and zero Dirichlet data (provided β and ε are as in the hypothesis).
We let u denote such a solution and show that u satisfies (6.1) and (6.2). We begin by
studying ∇u near the support of a. By the Cauchy-Schwarz inequality, together with
the normalization of a and the estimate for the L2(dσε)-mixed problem (see Theorem
4.6), we have

∫
∆210ρ(xa)

(∇u)∗(x) dσε′ ≤
(∫

∆210ρ(xa)
(∇u)∗(x)2 dσε

)1/2

σ2ε′−ε(∆210ρ(xa))
1/2

≤ C‖a‖L2(σε)σ2ε′−ε(∆210ρ(xa))
1/2

≤ C
σε(∆ρ(xa))

1/2σ2ε′−ε(∆210ρ(xa))
1/2

σε′(∆ρ(xa))
,
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provided 2ε′ − ε > −1, that is ε′ > (ε − 1)/2 (note that the latter is bounded below
by (4β − π)/2(π − 2β) > −1). Lemma 3.1 now grants

σε(∆ρ(xa))
1/2σ2ε′−ε(∆210ρ(xa))

1/2

σε′(∆ρ(xa))
≤ C.

Next, we consider ∇u away from the support of a: we will show that there is η > 0
so that ∫

Σk

(∇u)∗(x) dσε′ ≤ C2−ηk. (6.17)

Summing over k will give the estimate for (∇u)∗.
We begin with the Cauchy-Schwarz inequality and then use the estimate of Lemma

6.6 (note that we have ε > 2β/(π − 2β) > 0 > −1 + 2/q0) to obtain

∫
Σk

(∇u)∗(x) dσε′(x) ≤
(∫

Σk

(∇u)∗(x)2 dσε(x)
)1/2

σ2ε′−ε(Σk)
1/2

≤ C
σ2ε′−ε(Σk)

1/2σε(Σk)
1/2

σε′(∆ρ(xa))2k(1+δ)

= C2−δk
max(|xa|, 2kρ)ε

′

max(|xa|, ρ)ε′

where the last inequality follows from Lemma 3.1. We have

max(|xa|, 2kρ)
max(|xa|, ρ)

=


1, |xa|

ρ
< 1

|xa|/ρ, 1 < |xa|
ρ
< 2k

2k, |xa|
ρ
> 2k.

(6.18)

In particular, we have

1 ≤ max(|xa|, 2kρ)
max(|xa|, ρ)

≤ 2k .

Thus, letting η := δ − max{ε′, 0} > 0, we obtain (6.17). Summing over k yields
estimate (6.1).

Now we indicate why ∂u/∂ν lies in H1(∂Ω, dσε′). A similar, but simpler, argument
shows that u lies in H1,1(∂Ω, dσε′). We first prove the vanishing moment condition:∫

∂Ω

∂u

∂ν
dσ = 0. (6.19)

To this end, we observe that, since
∫
∂Ω a dσ = 0, we may proceed as in the proof of

Lemma 6.5 and inequality (6.17) to obtain∫
∂Ω

(∇u)∗ dσ < +∞. (6.20)
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On account of (6.20) we may now apply the divergence theorem to obtain (6.19). To
continue, we follow the arguments of Coifman and Weiss [8]. We begin by writing

∂u

∂ν
=

∞∑
k=0

bk

where b0 := χ∆0(
∂u
∂ν
−
∫
∆ρ
− ∂u

∂ν
dσ) and, for k ≥ 1, bk := χΣk

∂u
∂ν

+ χ∆k−1

∫
∆k−1
− ∂u

∂ν
dσ −

χ∆k

∫
∆k
− ∂u

∂ν
dσ. The estimate of Lemma 6.6 and arguments used above imply that

∫
∂Ω
|bk| dσε′ ≤

(∫
∆k

|bk|2 dσε
)1/2

σ2ε′−ε(∆k)
1/2 ≤ 2−ηk.

where again η := δ − max(ε′, 0) > 0. The one tricky point in this argument is that
we must use (6.19) to obtain that

∫
∆k

∂u
∂ν
dσ = −

∫
∂Ω\∆k

∂u
∂ν
dσ. Thus we have that

2ηkbk is normalized in L1(dσε′). In order to prove that bk is in H1(dσε′), one now
proceeds as in Strömberg and Torchinsky [32, Theorem 1, p. 111] to show that the
grand maximal function is in L1(dσε′) and then find an atomic decomposition. This
argument gives estimate (6.2) for ∂u/∂ν in H1(dσε′); the corresponding estimate for
u is obtained in a similar fashion.

7 Conclusion

In this section, we give the final arguments to prove existence and uniqueness for the
mixed problem in Lp(dσ). This is the result stated in Theorem 1.1.

In section 4, we obtained existence and uniqueness for the solution of the L2(dσε)-
mixed problem for ε in an interval which includes positive values of ε and does not
include 0. In this section, we will study solutions which have atomic data and show
that the non-tangential maximal function for such solutions will lie in L1(dσε′) for ε′

small.
Our results are restricted to domains with Lipschitz constantM that is less than 1.

This restriction is inherited from the previous sections (Lemma 4.4). We do not make
an effort to find the largest value of p0 (nor do we expect that the restriction M < 1 is
essential). However, as the example discussed in the introduction indicates, we cannot
expect to always have p0 ≥ 2, even in the case of smooth domains. Furthermore, in
Brown [4] the mixed problem is solved in L2(dσ) for certain Lipschitz domains with
arbitrarily large Lipschitz constant; thus, it is more than the Lipschitz constant that
governs the solvability of this problem.

We begin with our uniqueness result.

Lemma 7.1 Let δ > 0 be as in Lemma 6.2. Suppose that ε′ and p ≥ 1 satisfy:
−δ < ε′ ≤ 0, 1/p′ − ε′/p < δ. Under these hypotheses, the solution of the mixed
problem (1.1) for Lp(dσε′) is unique.
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Proof. Suppose that u solves the mixed problem for Lp(dσε′) with zero data, that is
∆u = 0 in Ω
u = 0 on D
∂u
∂ν

= 0 on N
(∇u)∗ ∈ Lp(dσε′)

(7.1)

We will show that u solves the regularity problem (2.5) with zero data and then use
Lemma 2.6 to conclude that u = 0. To see that u vanishes on N ⊂ ∂Ω, we will show
that there is η > 0 such that for any H1(dση)-atom, a, we have∫

N
u a dσ = 0 . (7.2)

This means that u is constant almost everywhere. In order to prove (7.2), we fix
η > 0 so that

0 <
1

p′
− ε′

p
< η < δ

(where 1/p + 1/p′ = 1) and we let a be a ση-atom supported in a boundary ball
∆r(xa). According to (the proof of) Theorem 6.1, the mixed problem in H1(dση)
with Neumann data a and with zero Dirichlet data has a solution v that satisfies

|v(z)| ≤ C|z − xa|−δ, if |z − xa| ≥ 2ρ ; (7.3)

moreover, for ε as in Theorem 4.6, we have

(∇v)∗ ∈ L2(dσε) ∩ L1(dση). (7.4)

We will need a pointwise estimate for u; to this end, given z in Ω, we consider the
path in Ω from 0 to z given by: γz(t) = (tz1, φ(tz1) + t(z2 − φ(z1))). Recall that φ is
the function whose graph gives ∂Ω. We define the following Carleson measure with
respect to dσ:

dµz(y) := χB2|z|(y) dH1|γz
, y ∈ Ω ,

where H1 denotes 1−dimensional Hausdorff measure. By the Fundamental Theorem
of Calculus, properties of Carleson measures (Proposition 2.2) and Hölder’s inequality,
we have

|u(z)| ≤
∫
γz

|∇u| |dγz|

≤ C
∫
∆2|z|(0)

(∇u)∗dσ

≤ |z|
1
p′−

ε′
p ‖(∇u)∗‖Lp(dσε′ )

. (7.5)

Note that by a similar argument we may show that u is locally bounded on ∂Ω.
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With these estimates collected, we now proceed to the main part of the argument.
Let R be large and let ψR be a cutoff function which is equal to 1 on BR(0), zero
outside B2R(0) and such that |∇ψR| ≤ C/R. We apply Green’s second identity to
the pointwise products v ψR and uψR and obtain∫

∂Ω
ψ2
R

(
v
∂u

∂ν
− u

∂v

∂ν

)
dσ = 2

∫
Ω
ψR(v∇u · ∇ψR − u∇v · ∇ψR) dy. (7.6)

Concerning the left-hand side of (7.6), on account of the boundary conditions satisfied
by u and v, we have ∫

∂Ω
ψ2
R

(
v
∂u

∂ν
− u

∂v

∂ν

)
dσ = −

∫
N
ψ2
R u a dσ .

Since a is compactly supported and u is locally bounded (see (7.5) and comment
thereafter) we may apply the Lebesgue dominated convergence theorem and conclude

lim
R→∞

∫
∂Ω
ψ2
R

(
v
∂u

∂ν
− u

∂v

∂ν

)
dσ = −

∫
N
u a dσ . (7.7)

Concerning the right-hand side of (7.6), we will show that

lim
R→∞

∫
Ω
ψR v∇u · ∇ψR dy = lim

R→∞

∫
Ω
ψR u∇v · ∇ψR dy = 0. (7.8)

Indeed, if R is large, then from Lemma 6.2, for z in the support of ∇ψR, we have

|v(z)| ≤ CR−δ (7.9)

and it follows that ∫
Ω
ψR v∇u · ∇ψR dy ≤ CR−δ

∫
Ω
|∇ψR||∇u| dy.

By Hölder inequality we have∫
Ω
|∇ψR||∇u| dy ≤ R− ε′

p

∫
BR(0)

|∇ψR| |∇u| |y|
ε′
p dy

≤ R
1
p′−

ε′
p

(∫
Ω
|∇u|p χBR(0)

|y|ε′

R
dy

) 1
p

.

By Carleson Theorem, see (2.3) and Proposition 2.2, the last term in the inequalities
above is bounded by

CR
1
p′−

ε′
p‖(∇u)∗‖Lp(dσε′ )

.

We conclude ∣∣∣∣∫
Ω
ψR(v∇u · ∇ψR)dy

∣∣∣∣ ≤ CR
1
p′−

ε′
p
−δ‖(∇u)∗‖Lp(dσε′ )

; (7.10)
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our hypotheses on η, ε′ and p imply that the exponent of R is negative, so the first
integral in (7.8) vanishes as R→∞. To handle the second integral in (7.8) we apply
(7.5); using the fact the ∇ψR is supported in the annulus R < |z| < 2R we obtain∣∣∣∣∫

Ω
ψR u∇ψR · ∇v dy

∣∣∣∣ ≤ CR
1
p′−

ε′
p ‖(∇u)∗‖Lp(∂Ω.dσε′ )

R−η
∫
R<|y|<2R

|∇v| |y|
η

R
dy.

By applying Proposition 2.2 on Carleson measures one more time, we see that the
latter is bounded by

CR
1
p′−

ε′
p
−η‖(∇u)∗‖Lp(dσε′ )

∫
∂Ω

(∇v)∗ dση.

It follows that the second integral in (7.8) also vanishes as R tends to infinity. This
completes the proof of (7.8) and of this Lemma.

Theorem 7.2 Suppose Ω, N , D is a standard Lipschitz graph domain for the mixed
problem, with Lipschitz constant M < 1 and set β = arctan(M). There is δ = δ(M)
satisfying 0 < δ < 1 so that, for max{−δ , 4β−π

2(π−2β)
} < ε′ ≤ 0 the mixed problem

(1.1) for L1(dσε′) with Dirichlet data in H1,1(D, dσε′) and with Neumann data in
H1(N, dσε′) is uniquely solvable. The solution u satisfies the following estimates∫

∂Ω
(∇u)∗(x) dσε′ ≤ C(M, ε′)

(
‖fN‖H1(N,dσε′ )

+ ‖fD‖H1,1(D,dσε′ )

)
; (7.11)

‖u‖H1,1(dσε′ )
+

∥∥∥∥∥∂u∂ν
∥∥∥∥∥
H1(dσε′ )

≤ C(M, ε′)
(
‖fN‖H1(N,dσε′ )

+ ‖fD‖H1,1(D,dσε′ )

)
. (7.12)

Proof. We first observe that we may use the solution of the regularity problem
from Theorem 5.1 to reduce to the case where the Dirichlet data is zero. More
precisely, we consider the (unique) solution v of the regularity problem (2.5) with
data f̃D ∈ H1,1(dσε′) (here f̃D denotes an extension of fD to ∂Ω). By Theorem 5.1 it
follows that ∂v/∂ν ∈ H1(∂Ω, dσε′), and it is easy to see that u is the unique solution
of the mixed problem with data fD and fN if and only if u − v solves the mixed
problem with zero Dirichlet data and with Neumann data gN := fN − ∂v/∂ν.

To prove existence we consider any atomic decomposition for gN , namely

gN(x) =
∞∑
j=1

λjaj(x),
∞∑
j=1

|λj| < +∞ , (7.13)

see (5.1) and (5.2). By Theorem 6.1 it follows that for each j the mixed problem:
∆hj = 0 in Ω
hj = 0 on D
∂hj

∂ν
= aj on N

(∇hj)∗ ∈ L1(dσε′)

(7.14)
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has a solution hj that satisfies:

‖hj‖H1,1(dσε′ )
+

∥∥∥∥∥∂hj∂ν

∥∥∥∥∥
H1(dσε′ )

≤ C(M, ε′). (7.15)

Thus, the function

h :=
∞∑
j=1

λjhj

is a solution of the mixed problem with zero Dirichlet data and with Neumann data
gN , and it satisfies: ∥∥∥∥∥∂h∂ν

∥∥∥∥∥
H1(dσε′ )

≤ C(M, ε′)
∞∑
j=1

|λj| .

By Lemma 7.1, h is unique, (i.e. h is independent of the choice of the atomic decom-
position for gN); taking the infimum over all atomic decompositions of gN now yields
(7.11). This proves existence; uniqueness follows from Lemma 7.1.

Next, we recall a few well known results concerning the the complex interpolation
spaces of weighted Lp and Hardy spaces, see Bergh and Löfstrom [3, Theorem 5.5.3,
Corollary 5.5.4], Strömberg and Torchinsky [32, Theorem 3, pg. 179]. For weights w0

and w1, and exponents p0, p1 we set

1

pθ
=

1− θ

p0

+
θ

p1

, wθ = w
(1−θ)pθ

p0
0 w

θpθ
p1

1 , 0 ≤ θ ≤ 1. (7.16)

We let [A,B]θ denote the complex interpolation space of index θ as defined in the
monograph of Bergh and Löfstrom [3, Chapt. 4].

Theorem 7.3 Suppose w0 and w1 are weights, then we have

[L1(w0 dσ), L2(w1 dσ)]θ = Lpθ(wθ dσ).

If in addition the weights wj are in A∞(dσ) for j = 0, 1, then we have

[H1(w0 dσ), L2(w1 dσ)]θ = Lpθ(wθ dσ).

Moreover, if a linear operator T is bounded:

T : H1(w0 dσ) → L1(w0 dσ),

T : L2(w1 dσ) → L2(w1 dσ)

with norms M0 and M1 respectively, then T is bounded:

Lpθ(wθ dσ) → Lpθ(wθ dσ)

with norm M satisfying
M ≤ CM1−θ

0 M θ
1 .

Remark. The constant C in the estimate for the operator norm is 1 when we consider
Lebesgue spaces. It may not be one for Hardy spaces, see Strömberg and Torchinsky
[32].
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We will focus on the case: w0 dσ = dσε′ , with ε′ < 0 as in Theorem 7.2, and
w1 dσ = dσε, where ε > 0 is as in Theorem 4.6. We are now ready to give the proof
of our main result, Theorem 1.1.

Proof of Theorem 1.1. We first use a result of Dahlberg and Kenig [10, Theorem 3.8]
to reduce to the case where the Dirichlet data in the mixed problem is zero. (While
Dahlberg and Kenig only discuss n ≥ 3 in their work, one can extend their results to
two dimensions.)

We will use interpolation to establish existence of solutions satisfying the estimate
(1.4). Because the complex method applies to linear operators, we employ a standard
technique to obtain the non-tangential maximal function as a supremum of linear
operators. Fix {yj}j∈N, a dense subset of the sector Γ(0) and let E = {Ej} be
decomposition of ∂Ω into disjoint measurable subsets, Ej. We define a linear operator:

fN ∈ H1(dσε′) + L2(dσε) → TE(fN)(x) :=
∑
j

χEj
(x)∇u(x+ yj) , x ∈ ∂Ω,

where u is the solution of the H1(dσε′)-mixed problem (resp. the L2(dσε)-mixed prob-
lem) for data fN and fD = 0. Note that for a suitable sequence of decompositions
{Ek}, we have

(∇u)∗(x) = lim
k→∞

|TEk
fN(x)| a.e. x ∈ ∂Ω .

Now complex interpolation, (see Theorem 7.3) implies that the operator TE is
bounded on the intermediate spaces Lpθ(wθ dσ) with a norm independent of E . Fatou’s
lemma then yields boundedness for the non-tangential maximal function. It is easy
to see that for the spaces L2(dσε), (2β)/(π− 2β) < ε < 1 and H1(dσε′), max(−δ, (ε−
1)/2) < ε′ ≤ 0, the intermediate spaces include Lp(dσ) for 1 < p < p1(M) where

p1(M) =
2(π − 2β) min(δ, π−4β

2(π−2β)
) + 2β

(π − 2β) min(δ, π−4β
2(π−2β)

) + 2β
.

In addition, in Lemma 7.1, uniqueness was established for p in the range: 1 < p <
p2(M), p2(M) = 1/(1 − δ(M)). Thus, we have existence and uniqueness for p ∈
(1, p0(M)) with p0 = min(p1(M), p2(M)).

We close by listing a few open questions.

• Can we remove the restriction that the Lipschitz constant of the domain is at
most one?

• Can we obtain similar results in higher dimensions? The obvious problem here
is that our two-dimensional weighted estimates rely on a Rellich identity which
is based on complex function theory.
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• Can we study domains where the boundary between D and N is more in-
teresting? For example in R3, let Ω = {x : x3 > c(|x1| + |x2|)} and let
D = ∂Ω ∩ {x : x1x2 > 0} and then N = ∂Ω \ D. Can we solve the mixed
problem for some Lp space in this domain?

• Can we extend the solution of the mixed problem to general Lipschitz domains,
rather than only Lipschitz graph domains?
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