1,976 research outputs found

    The local content of all pure two-qubit states

    Get PDF
    The (non-)local content in the sense of Elitzur, Popescu, and Rohrlich (EPR2) [Phys. Lett. A 162, 25 (1992)] is a natural measure for the (non-)locality of quantum states. Its computation is in general difficult, even in low dimensions, and is one of the few open questions about pure two-qubit states. We present a complete solution to this long-lasting problem.Comment: 9 pages, 3 figure

    Is Communication Complexity Physical?

    Full text link
    Recently, Brassard et. al. conjectured that the fact that the maximal possible correlations between two non-local parties are the quantum-mechanical ones is linked to a reasonable restriction on communication complexity. We provide further support for the conjecture in the multipartite case. We show that any multipartite communication complexity problem could be reduced to triviality, had Nature been more non-local than quantum-mechanics by a quite small gap for any number of parties. Intriguingly, the multipartite nonlocal-box that we use to show the result corresponds to the generalized Bell inequality that manifests maximal violation in respect to a local hidden-variable theory

    Scalar and Spinor Perturbation to the Kerr-NUT Spacetime

    Full text link
    We study the scalar and spinor perturbation, namely the Klein-Gordan and Dirac equations, in the Kerr-NUT space-time. The metric is invariant under the duality transformation involving the exchange of mass and NUT parameters on one hand and radial and angle coordinates on the other. We show that this invariance is also shared by the scalar and spinor perturbation equations. Further, by the duality transformation, one can go from the Kerr to the dual Kerr solution, and vice versa, and the same applies to the perturbation equations. In particular, it turns out that the potential barriers felt by the incoming scalar and spinor fields are higher for the dual Kerr than that for the Kerr. We also comment on existence of horizon and singularity.Comment: 31 pages including 20 figures, RevTeX style: Final version to appear in Classical and Quantum Gravit

    Classical simulation of entanglement swapping with bounded communication

    Get PDF
    Entanglement appears under two different forms in quantum theory, namely as a property of states of joint systems and as a property of measurement eigenstates in joint measurements. By combining these two aspects of entanglement, it is possible to generate nonlocality between particles that never interacted, using the protocol of entanglement swapping. We show that even in the more constraining bilocal scenario where distant sources of particles are assumed to be independent, i.e. to share no prior randomness, this process can be simulated classically with bounded communication, using only 9 bits in total. Our result thus provides an upper bound on the nonlocality of the process of entanglement swapping.Comment: 6 pages, 1 figur

    Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations

    Full text link
    Bell's theorem reveals contradictions between the predictions of quantum mechanics and the EPR postulates for a pair of particles only in situations involving imperfect statistical correlations. However, with three or more particles, contradictions emerge even for perfect correlations. We describe an experiment which can be realized in the laboratory, using four-photon entangled states generated by parametric down-conversion, to demonstrate this contradiction at the level of perfect correlations.Comment: publishe

    Stringent Constraints on Cosmological Neutrino-Antineutrino Asymmetries from Synchronized Flavor Transformation

    Full text link
    We assess a mechanism which can transform neutrino-antineutrino asymmetries between flavors in the early universe, and confirm that such transformation is unavoidable in the near bi-maximal framework emerging for the neutrino mixing matrix. We show that the process is a standard Mikheyev-Smirnov-Wolfenstein flavor transformation dictated by a synchronization of momentum states. We also show that flavor ``equilibration'' is a special feature of maximal mixing, and carefully examine new constraints placed on neutrino asymmetries. In particular, the big bang nucleosynthesis limit on electron neutrino degeneracy xi_e < 0.04 does not apply directly to all flavors, yet confirmation of the large-mixing-angle solution to the solar neutrino problem will eliminate the possibility of degenerate big bang nucleosynthesis.Comment: 11 pages, 6 figures; minor changes to match PRD versio

    Massive torsion modes, chiral gravity, and the Adler-Bell-Jackiw anomaly

    Full text link
    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin 1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions.Comment: 7 pages, RevTeX fil

    High stakes and low bars: How international recognition shapes the conduct of civil wars

    Get PDF
    When rebel groups engage incumbent governments in war for control of the state, questions of international recognition arise. International recognition determines which combatants can draw on state assets, receive overt military aid, and borrow as sovereigns—all of which can have profound consequences for the military balance during civil war. How do third-party states and international organizations determine whom to treat as a state's official government during civil war? Data from the sixty-one center-seeking wars initiated from 1945 to 2014 indicate that military victory is not a prerequisite for recognition. Instead, states generally rely on a simple test: control of the capital city. Seizing the capital does not foreshadow military victory. Civil wars often continue for many years after rebels take control and receive recognition. While geopolitical and economic motives outweigh the capital control test in a small number of important cases, combatants appear to anticipate that holding the capital will be sufficient for recognition. This expectation generates perverse incentives. In effect, the international community rewards combatants for capturing or holding, by any means necessary, an area with high concentrations of critical infrastructure and civilians. In the majority of cases where rebels contest the capital, more than half of its infrastructure is damaged or the majority of civilians are displaced (or both), likely fueling long-term state weakness

    Invariant Regularization of Anomaly-Free Chiral Theories

    Get PDF
    We present a generalization of the Frolov-Slavnov invariant regularization scheme for chiral fermion theories in curved spacetimes. local gauge symmetries of the theory, including local Lorentz invariance. The perturbative scheme works for arbitrary representations which satisfy the chiral gauge anomaly and the mixed Lorentz-gauge anomaly cancellation conditions. Anomalous theories on the other hand manifest themselves by having divergent fermion loops which remain unregularized by the scheme. Since the invariant scheme is promoted to also include local Lorentz invariance, spectator fields which do not couple to gravity cannot be, and are not, introduced. Furthermore, the scheme is truly chiral (Weyl) in that all fields, including the regulators, are left-handed; and only the left-handed spin connection is needed. The scheme is, therefore, well suited for the study of the interaction of matter with all four known forces in a completely chiral fashion. In contrast with the vectorlike formulation, the degeneracy between the Adler-Bell-Jackiw current and the fermion number current in the bare action is preserved by the chiral regularization scheme.Comment: 28pgs, LaTeX. Typos corrected. Further remarks on singlet current
    corecore