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The local (nonlocal) content in the sense of Elitzur, Popescu, and Rohrlich [Phys. Lett. A 162, 25 (1992)] is a
natural measure for the locality (nonlocality) of quantum states. Its computation is in general difficult, even in
low dimensions, and is one of the few open questions about pure two-qubit states. We present a complete solution
to this long-lasting problem.
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I. INTRODUCTION

Bell showed [1] that the classical metaphysical assumptions
used by Einstein, Podolsky, and Rosen (EPR) [2] have empir-
ical consequences in the form of a constraint on correlations
of quantum measurement outcomes: the Bell inequalities.
[Whether or not Einstein thought of a completion of quantum
theory in the form of a hidden-variable theory ruled out by
Bell’s theorem, as Bell believed, has been disputed (see, e.g.,
the Appendix of Ref. [3] and Ref. [4]).] Bell later subsumed
these assumptions into the notion of local causality [5], today
commonly abbreviated to just locality. The experiments done
so far give strong evidence that Bell inequalities are violated
as predicted by quantum mechanics [6] and thus that there
cannot be any local model for the corresponding correlations:
The world is in this sense nonlocal.

Bell’s theorem is a metatheoretical result of, at first sight,
rather philosophical concern. That it can be of actual practical
interest came as a surprise. [It was a surprise for Bell too
(see, e.g., Ref. [7], p. 314).] Starting with an intuition of Ekert
[8], it was established later on that nonlocal correlations can
be made the basis of so-called device-independent quantum
information processing [9–13]. There are many examples in
the history of physics where a theoretical result is used for
applications not foreseen by the pioneers, but Bell’s theorem
with its foundational character might be the most striking yet.

Whereas the violation of a Bell inequality implies nonlocal-
ity, it does not quantify it. To take the amount of the violation as
a measure is problematic. For example, the state that violates
it maximally depends on the particular inequality [14]. A
more natural measure of nonlocality, proposed three times
independently [15–17], quantifies it in terms of communica-
tion complexity (for precise mathematical definitions of this
generalization of the original notion introduced by Yao [18],
see, e.g., Refs. [19,20]): how many bits of communication are
minimally needed for the simulation of quantum states. For the
simplest case of pure two-qubit states most answers are known.
Surprisingly, as shown by Toner and Bacon [21], a single bit
is already enough for the maximally entangled state and two
bits for all partially entangled ones. The main open question is
whether one bit is already enough even for partial entanglement
or whether the two bits of Ref. [21] are necessary. Whatever the
answer to this question, communication complexity is clearly a
very coarse measure for the nonlocality of these states. In that
respect a more promising approach starts with the so-called
local content.

Consider an experiment where one measures the probability
distribution PQ(A,B|a,b) of the measurement outcomes A

and B for measurements a and b by preparing repeatedly
particle pairs in the same quantum state. If PQ comes from
a nonlocal state the whole ensemble of particle pairs cannot
be described with a local model. However, as observed by
Elitzur, Popescu, and Rohrlich [22], there are states for which
it is possible to regard a fraction pL ∈]0,1] of the particle
pairs as behaving locally and the completing fraction 1 − pL

as behaving nonlocally. We will then say that there exists an
Elitzur-Popescu-Rohrlich (EPR2) decomposition into a local
part PL with weight pL and a nonlocal part PNL with weight
1 − pL (see Fig. 1):

PQ = pLPL + (1 − pL)PNL, (1)

where the decomposition holds for all von Neumann mea-
surements and all outcomes. EPR2 decompositions are in
general not unique. What is unique is the local content pLC ,
which is defined as the maximal value pL can take over all
EPR2 decompositions. We will refer to a decomposition with
pL = pLC as a maximal EPR2 decomposition and define the
nonlocality of a state (or its nonlocal content) as 1 − pLC .
This nonlocality measure can be defined for any probability
distribution. For instance, the nonlocality of the nonlocal
part of a maximal EPR2 decomposition is 1 and such a
nonlocal part is thus maximally nonlocal. We also note that
the nonlocal part of any EPR2 decomposition of a quantum
state is always more nonlocal than or equally nonlocal as the
quantum state it decomposes (see Fig. 1) and is in general not
quantum; however, it is still nonsignaling since both PQ and PL

are.
The local content of pure two-qubit states was already

investigated by Elitzur, Popescu, and Rohrlich. By making
appropriate choices of the basis, all these states can be written
as

|�(θ )〉 = cos

(
θ

2

)
|00〉 + sin

(
θ

2

)
|11〉, (2)

with θ ∈ [0,π/2]. All entangled states (θ > 0) are nonlocal
[23,24]. In spite of this, Elitzur, Popescu, and Rohrlich found
an explicit EPR2 decomposition with local weight 1

4 (1 − sin θ )
for all these states, thus giving a lower bound on their
local content. Furthermore, they gave an argument that the
maximally entangled state has a local content of zero and
is thus fully nonlocal. Further progress was achieved by
Barrett, Kent, and Pironio [25]. Since the local part necessarily
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FIG. 1. (Color online) An EPR2 decomposition holds for all
measurement directions a and b and measurement outcomes A and
B. The red wavy lines indicate nonlocality. The nonlocal part is more
nonlocal than the decomposed quantum probability distribution. The
outcomes of the local part are determined by λ and the corresponding
measurement direction.

obeys Bell inequalities, this places constraints on any EPR2
decomposition and can be used for deriving an upper bound
on the local content. With this idea and using a chained
Bell inequality [26,27], they were able to rederive (without a
technical assumption used by Elitzur, Popescu, and Rohrlich)
the result that maximally entangled states are fully nonlocal
[28]. Scarani [29] narrowed the set of possible values of pLC

further: He derived both a new lower bound of 1 − sin θ and
numerically, using again the same chained Bell inequality as
in Ref. [25], an upper bound of cos θ ; he conjectured in a
preliminary version [30] of Ref. [29] that this equals the local
content, i.e., that pLC = cos θ . This conjecture was proven to
be correct by Branciard, Gisin, and Scarani [31] for the states
with cos θ ∈ [0, 4

5 ].
The main result of this paper is an explicit model for the

local part that generalizes the model of Ref. [31] and leads to
a valid EPR2 decomposition with local weight pL = cos θ for
all states (2). Since cos θ is an upper bound for the local content
(which we prove analytically in Appendix B), this implies that
pLC = cos θ and thus proves Scarani’s conjecture for all pure
two-qubit states.

II. PROBLEM

We will parametrize the von Neumann measurements of
Alice and Bob by two three-dimensional unit vectors a and b
on the Bloch sphere in the form [32]

a =

⎛
⎜⎝

a⊥ cos α

a⊥ sin α

az

⎞
⎟⎠, b =

⎛
⎜⎝

b⊥ cos β

b⊥ sin β

bz

⎞
⎟⎠. (3)

With the definitions s := sin θ , c := cos θ , and χ := α − β,
the expectation values of Alice’s and Bob’s measurement

outcomes A,B ∈ {1,−1} for the states (2) are

〈AB〉Q|a,b = azbz + sa⊥b⊥ cos χ, (4)

〈A〉Q|a = caz, (5)

〈B〉Q|b = cbz. (6)

Without loss of generality [33,34], we consider only
deterministic models for the local part. That is, we take the
outcomes to be functions of some shared random variable λ

and of the corresponding measurement directions:

A = A(a,λ), B = B(b,λ). (7)

Because of locality, A is independent of b and B is independent
of a. Moreover, the probability density ρ(λ) of the shared
random variable is assumed to be independent of both
measurement directions. The expectation values of the local
part are then given as

〈AB〉L|a,b =
∫

dλ ρ(λ)A(a,λ)B(b,λ),

〈A〉L|a =
∫

dλ ρ(λ)A(a,λ), (8)

〈B〉L|b =
∫

dλ ρ(λ)B(b,λ).

Ultimately, our aim is to prove that pLC = c. Since pLC �
c, as proven numerically in Ref. [29] and analytically in
Appendix B, it is enough to find a model for the local part
that admits a local weight pL = c.

Barrett, Kent, and Pironio [25] showed that the max-
imally entangled state, which is fully nonlocal, neces-
sarily has random marginals. We prove in Appendix C
that the nonlocal part of a maximal decomposition of the
states (2), which is also fully nonlocal, must also have random
marginals. As can be seen from Eqs. (5) and (6), this implies
the constraints 〈A〉L = az and 〈B〉L = bz for the local part.
Note that this agrees with the ansatz used in Ref. [31].

Once one has found candidate functions (7) for the local
part, it remains to be checked whether the implied nonlocal
part PNL = PQ−cPL

1−c
(assuming pL = c [35]) is a probability for

all measurement directions and outcomes. Since the nonlocal
part has random marginals, this is the case if the correlation
term is between −1 and 1. The problem to be solved reduces
to the following task [31] for any given value of c.

Problem. Find functions A(a,λ) and B(b,λ) taking values
in {1,−1} and a probability distribution ρ(λ) such that

〈A〉L|a = az, (9)

〈B〉L|b = bz, (10)

|〈AB〉Q|a,b − c〈AB〉L|a,b| � 1 − c (11)

hold for all measurement directions a and b.
Note that this formulation of the problem is redundant since,

as shown in Appendix C, constraint (11) implies Eqs. (9) and
(10).
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III. MODEL

Our starting point is the model for the local part introduced
in Ref. [31], which we will call the Branciard-Gisin-Scarani
(BGS) model. The complete model below will be a general-
ization of this model.

Branciard-Gisin-Scarani model for the local part. Alice
and Bob share the random variable λ, which is a random
three-dimensional unit vector uniformly distributed over the
Bloch sphere. For measurement directions a and b, Alice and
Bob output, respectively,

A(a,λ) = sgn[az − a · λ], (12)

B(b,λ) = sgn[bz − b · λ], (13)

where sgn is the sign function (∈ {1,−1}).
This model gives the right marginals (9) and (10) and the

correlation becomes [see Ref. [31] or Eq. (E15) in Appendix E
for the explicit form of EBGS

L (az,bz,χ )]

〈AB〉BGS
L|a,b =

⎧⎪⎨
⎪⎩

1 − |az − bz| if χ = 0,

−1 + |az + bz| if χ = π,

EBGS
L (az,bz,χ ) if 0 < |χ | < π.

(14)

This model solves the problem partially: As verified numeri-
cally in Ref. [31], Eq. (11) is fulfilled for all states such that
c ∈ [0, 4

5 ].
To get a leading idea for our generalization of the BGS

model, we will concentrate on a necessary condition for the
local part [31]. If Alice measures in a direction a and gets
the outcome 1, Bob’s qubit collapses to the state |a(1)〉 [the
eigenstate of a(1) · σ with eigenvalue 1], where |a(1)〉 is one
step above |a〉 on the Hardy ladder [36,37] (see Appendix A).
The vector a(1) is given by

a(1) =

⎛
⎜⎝

a⊥(1) cos α

a⊥(1) sin α

az(1)

⎞
⎟⎠ for az(1) := az + c

1 + caz

(15)

and a⊥(1) =
√

1 − az(1)2. If Bob now measures in the
direction a(1), he will always get the outcome 1 and
thus PQ(1,−1|a,a(1)) = 0. In a similar way, we also have
PQ(−1,1|a,a(−1)) = 0, where

a(−1) =

⎛
⎜⎝

a⊥(−1) cos α

a⊥(−1) sin α

az(−1)

⎞
⎟⎠ for az(−1) := az − c

1 − caz

, (16)

and a(−1) is one step below a on the Hardy ladder. Since
PQ = pLPL + (1 − pL)PNL, this implies (for pL �= 0) that the
corresponding probabilities for the local part must be zero too:

PL(1,−1|a,a(1)) = 0, (17)

PL(−1,1|a,a(−1)) = 0. (18)

The BGS model fulfills these conditions for all states, including
the ones that violate constraint (11) and thus for which the
model does not give a valid EPR2 decomposition. To see this,
we note for instance that 〈A〉BGS

L|a = az, 〈B〉BGS
L|a(1) = az(1), and

that, since a and a(1) have the same azimuth angle (i.e., χ = 0)

and az(1) � az,

〈AB〉BGS
L|a,a(1) = 1 − |az − az(1)| = 1 + az − az(1). (19)

Hence one indeed has

P BGS
L (1,−1|a,a(1))

= 1
4

(
1 + 〈A〉BGS

L|a − 〈B〉BGS
L|a(1) − 〈AB〉BGS

L|a,a(1)

) = 0. (20)

Let us now see in what way we can alter Alice’s output
function (12) in the BGS model such that conditions (17) and
(18) still hold [we ignore condition (9) for a moment]. Assume
that Bob measures in direction b = a(1): Condition (17) still
holds if Alice chooses to output A(a(t),λ) with

a(t) =

⎛
⎜⎝

a⊥(t) cos α

a⊥(t) sin α

az(t)

⎞
⎟⎠ (21)

and −1 � az(t) � az(1). Similarly, assume that Bob measures
in direction b = a(−1): Condition (18) still holds if Alice
chooses to output A(a(t),λ) with az(−1) � az(t) � 1. Taken
together, since Bob could be measuring in either direction
a(1) or a(−1) about which Alice has no information, Alice
can choose to output A(a(t),λ) with az(−1) � az(t) � az(1)
and still be sure that conditions (17) and (18) hold. We will say
that Alice is free to choose a(t) in the Hardy sector Ha of a. To
use this wiggle room is precisely the idea for the construction
of our θ -dependent generalization of the BGS model.

Bob’s output will be identical to his output in Eq. (13)
but Alice will now output A(a(t),λ), where t ∈ [−1,1]
parametrizes the vectors in the Hardy sector Ha such that
a(0) = a and a(1) and a(−1) are the two vectors introduced
in Eqs. (15) and (16). Alice picks a particular a(t) depending on
a local (nonshared) random variable t , which has a probability
distribution ρa(t) that depends on az (besides depending on
θ ) [38]. One obvious constraint on ρa(t) comes from the
condition that Eq. (9) should still be fulfilled. Note that for
χ = 0 the model implies the same correlation term (14) as
the BGS model if b does not lie in the Hardy sector Ha of a.
Incidentally, for such measurement directions, one can show
(see Appendix D) that the BGS model does lead to a valid
EPR2 decomposition for all values of θ , as it should be for
the following generalization having a chance to be valid for all
states and all measurement directions.

Complete model for the local part. Alice and Bob share the
random three-dimensional vector λ, uniformly distributed on
the Bloch sphere. Alice can sample an additional local random
variable t ∈ [−1,1] according to the following distribution,
which depends on her setting a through its component az:

ρa(t) := s ln(γ )

4c

1 + G(t)az√
1 − G(t)2

(22)

with

γ := 1 + c

1 − c
, G(t) := γ t − 1

γ t + 1
. (23)

Alice’s and Bob’s outputs are then defined as

A(a,λ,t) = sgn[az(t) − a(t) · λ], (24)

B(b,λ) = sgn[bz − b · λ], (25)
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where

a(t) :=

⎛
⎜⎝

a⊥(t) cos α

a⊥(t) sin α

az(t)

⎞
⎟⎠ for az(t) := az + G(t)

1 + G(t)az

(26)

and a⊥(t) =
√

1 − az(t)2.
The parametrization of the vectors in the Hardy sectors

Ha as a(t) is motivated in Appendix A. The probability
distribution ρa(t) is derived in Appendix E from the postulate
that constraint (11) is saturated for the case that b lies in the
Hardy sector Ha of a. This, together with the previous remark
on the case where b does not lie in Ha, allows us to prove
analytically that our local model above defines a valid EPR2
decomposition, with a maximal local weight pL = pLC = c,
for all measurement directions a,b with χ = 0. One can show
in a similar way that this also works for measurements with
χ = π .

For measurement settings a,b with 0 < |χ | < π , we
checked numerically with standard numerical optimization
tools of a common computational software program that
constraint (11) holds within the expected numerical precision
(of absolute order 10−10). Note that for any θ , 〈AB〉L|a,b
depends only on the three parameters az, bz, and χ . We
also note that the implied nonlocal part is nonquantum for
all c ∈ ]0,1[ (see Appendix F).

IV. DISCUSSION

Our EPR2 decomposition for two-qubit states, inspired by
that of Ref. [31] and based on properties of Hardy ladder
vectors, thus allows us to show that the local content of all pure
two-qubit states (2) equals c = cos θ . This proves a conjecture
formulated in Ref. [30]. Interestingly, the nonlocality 1 − c

of these states is found to be monotonically related to its
entanglement, against the trend of results that suggest that
entanglement and nonlocality are of a rather different nature
(see, e.g., Refs. [39–41]).

One obvious next step is to consider more general states.
For the case of higher-dimensional partially entangled two-part
states, we only know of the numerical lower bound on pLC

found by Scarani [29] for a class of entangled qutrits. We
believe that the methods presented in Appendixes B and
C should be generalizable to get analytical upper bounds
that might then pave the way for models of the local part.
Whether the monotonic connection between entanglement and
nonlocality then still holds is a question of particular interest.

We would like to end with one possible application of
our decomposition and some ensuing open questions. Any
EPR2 decomposition can be used as a starting point for a
simulation protocol, where only the nonlocal part remains to
be simulated [42]. Now, the arguably biggest difficulty in the
simulation of partially entangled states is their nonrandom
marginals. Using our maximal EPR2 decomposition seems in
that respect ideally suited since its nonlocal part has random
marginals. We also note that nonlocal correlations with random
marginals that can be simulated with one bit of classical
communication can be simulated with one nonlocal Popescu-
Rohrlich (PR) box [43] too [44]. Thus, if the nonlocal part
of a maximal EPR2 decomposition for two-qubit correlations

can be simulated with one bit of communication, then the
corresponding quantum state can be simulated with one PR
box. This however is known to be impossible for weakly
entangled two-qubit states [39]; hence their nonlocal part in
a maximal EPR2 decomposition cannot be simulated with
one bit of communication. This does not yet answer the open
question of whether partially entangled states can be simulated
with a single bit: Whereas it is always possible to simulate the
decomposed state by simulating the nonlocal part, this might
not be the optimal way to do it. On the one hand, maximal
EPR2 decompositions lead to a natural alternative measure of
nonlocality; on the other hand, they thus lead to insights into
the quantification of nonlocality in terms of communication
complexity.
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APPENDIX A: HARDY-LADDER VECTORS

The vectors a(1) and a(−1), one step above and below
a = (a⊥ cos α,a⊥ sin α,az) on the Hardy ladder, are defined
such that PQ(1,−1|a,a(1)) = 0 and PQ(−1,1|a,a(−1)) = 0,
respectively, and are given by

a(1) =

⎛
⎜⎝

a⊥(1) cos α

a⊥(1) sin α

az(1)

⎞
⎟⎠ for az(1) = az + c

caz + 1
(A1)

and

a(−1) =

⎛
⎜⎝

a⊥(−1) cos α

a⊥(−1) sin α

az(−1)

⎞
⎟⎠ for az(−1) = az − c

−caz + 1
.

(A2)

The successive steps of the Hardy ladder are iteratively defined
as

PQ(1,−1|a(n),a(n + 1)) = 0, (A3)

PQ(−1,1|a(−n),a(−n − 1)) = 0 (A4)

for all n ∈ N. To get the explicit form of a(n) for all n ∈ Z,
we note that the maps

az �→ az ± c

±caz + 1
(A5)

are (real) Möbius transformations. The composition of Möbius
transformations basically reduces to the product of their
associated matrices, in our case to the product of(

1 ±c

±c 1

)
. (A6)
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Defining (we assume c < 1)

γ := 1 + c

1 − c
� 1, G(n) := γ n − 1

γ n + 1
∈ [−1,1], (A7)

one gets the explicit form of a(n) as

a(n) =

⎛
⎜⎝

a⊥(n) cos α

a⊥(n) sin α

az(n)

⎞
⎟⎠ for az(n) = az + G(n)

G(n)az + 1
(A8)

and a⊥(n) =
√

1 − az(n)2. This can be independently checked,
e.g., by induction.

In order to get a parametrization of the vectors between
a(−1) and a(1), we let n take real values t in the interval
[−1,1]. Note that az(t) is a monotonically increasing function.
We then define for every vector a its Hardy sector Ha to be
the set of all vectors that can be written as a(t) for some
t ∈ [−1,1]:

Ha := {a(t)|t ∈ [−1,1]}. (A9)

APPENDIX B: ANALYTIC PROOF THAT c IS AN UPPER
BOUND FOR pLC

Let us label N measurement directions of Alice as a(−N ),
a(−N + 2), . . ., a(N − 2) and N directions of Bob as
b(−N + 1), b(−N + 3), . . ., b(N − 1). For a given probability
distribution P with binary outcomes A,B, we define as a
correlation measure the expression

IN (P ) = P (A−N �= B−N+1) + P (A−N+2 �= B−N+1) + · · ·
+P (AN−2 �= BN−1) + P (A−N = BN−1), (B1)

where P (Ai �= Bj ) is shorthand notation for P (A �=
B|a(i),b(j )). As shown in Refs. [26,27], IN is a chained Bell
polynomial, defining the following chained Bell inequality,
satisfied by all local correlations:

IN (PL) � 1. (B2)

Since by linearity

IN (PQ) = pLIN (PL) + (1 − pL)IN (PNL) (B3)

and IN (PNL) does not have any constraints except that the
probabilities are between zero and one and thus IN (PNL) � 0,
IN (PQ) is an upper bound for pL [25]:

pL � IN (PQ). (B4)

We show now that the measurement directions of Alice and
Bob can be chosen such that

lim
N→∞

IN (PQ) = c. (B5)

For that, we start with an arbitrary unit vector

v(0) :=

⎛
⎜⎝

v⊥(0) cos(ω)

v⊥(0) sin(ω)

vz(0)

⎞
⎟⎠ (B6)

az(−3)

az(−1)

az(1)

bz(−2)

bz(0)

bz(2)

−1

1

FIG. 2. (Color online) Hardy ladder for N = 3. Each colored line
represents one term in the chained Bell inequality, the dashed red one
being the last one P (A−N = BN−1).

for any vz(0) ∈]−1,1[, v⊥(0) =
√

1 − vz(0)2 and ω ∈ [0,2π [.
Let us then define, with the notation of Eq. (A8),

v(n) ≡

⎛
⎜⎝

v⊥(n) cos(ω)

v⊥(n) sin(ω)

vz(n)

⎞
⎟⎠. (B7)

We then choose Alice’s settings to be a(n) = v(n) for n ∈
{−N,−N + 2, . . . ,N − 2} and Bob’s settings to be b(n) =
v(n) for n ∈ {−N + 1,−N + 3, . . . ,N − 1}. An example of
the z coordinates of such a set of vectors is drawn in Fig. 2 for
N = 3. Note that we have

lim
n→∞ v(n) =

⎛
⎜⎝

0

0

1

⎞
⎟⎠, lim

n→−∞ v(n) =

⎛
⎜⎝

0

0

−1

⎞
⎟⎠. (B8)

Since

PQ(1,−1|a(n),b(n + 1)) = 0 (B9)

for two neighboring Hardy steps a(n) = v(n) and b(n + 1) =
v(n + 1), one has

〈AnBn+1〉Q := 〈AB〉Q|a(n),b(n+1) = 1 + c[vz(n) − vz(n + 1)]

(B10)

and hence

PQ(An �= Bn+1) = 1

2
[1 − 〈AnBn+1〉Q]

= c

2
[vz(n + 1) − vz(n)]. (B11)

Similarly,

PQ(An+1 �= Bn) = c

2
[vz(n + 1) − vz(n)]. (B12)
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Then IN (PQ) becomes

IN (PQ) =
N−2∑

n=−N

c

2
[vz(n + 1) − vz(n)]

+ 1

2
[1 + 〈A−NBN−1〉Q]

= c

2
[vz(N − 1) − vz(−N )] + 1

2
[1 + 〈A−NBN−1〉Q].

(B13)

Because of Eq. (B8), we then have

lim
N→∞

IN (PQ) = c, (B14)

which leads, with Eq. (B4), to

pL � c. (B15)

APPENDIX C: PROOF THAT 〈A〉N L = 〈B〉N L = 0 FOR A
MAXIMAL EPR2 DECOMPOSITION OF PQ

As shown in Appendix B, there exist measurement direc-
tions for which

lim
N→∞

IN (PQ) = c. (C1)

Since we have, for a maximal EPR2 decomposition of PQ (i.e.,
for pL = pLC = c),

IN (PQ) = cIN (PL) + (1 − c)IN (PNL), (C2)

with IN (PL) � 1 and IN (PNL) � 0, then we must have

lim
N→∞

IN (PL) = 1, limN→∞ IN (PNL) = 0 (C3)

for such a set of measurement directions.
Note that apart from the last term P (A−N = BN−1), a term

that is present in IN (PNL) is also present in all subsequent
polynomials IN+2k(PNL) for k ∈ N. Since all terms appearing
in IN (PNL) are probabilities and limN→∞ IN (PNL) = 0, then
all terms have to be zero, except possibly for the last one,
which must only tend to zero (as N → ∞). Take one term
P (An �= Bn±1) = 0, which implies that

P (An = +1,Bn±1 = −1)

= 1
4 (1 + 〈An〉NL − 〈Bn±1〉NL − 〈AnBn±1〉NL) = 0,

P (An = −1,Bn±1 = +1)

= 1
4 (1 − 〈An〉NL + 〈Bn±1〉NL − 〈AnBn±1〉NL) = 0,

and therefore

P (An = +1,Bn±1 = −1) − P (An = −1,Bn±1 = +1)

= 1
2 (〈An〉NL − 〈Bn±1〉NL) = 0. (C4)

Hence 〈An〉NL = 〈Bn±1〉NL and by induction 〈Ai〉NL =
〈Bj 〉NL for any odd value of i and even value of j . In a similar

way, P (A−N = BN−1) → 0 implies that

P (A−N = BN−1 = +1)

= 1
4 (1 + 〈A−N 〉NL + 〈BN−1〉NL + 〈A−NBN−1〉NL) → 0,

P (A−N = BN−1 = −1)

= 1
4 (1 − 〈A−N 〉NL − 〈BN−1〉NL + 〈A−NBN−1〉NL) → 0,

and therefore

P (A−N = BN−1 = +1) − P (A−N = BN−1 = −1)

= 1
2 (〈A−N 〉NL + 〈BN−1〉NL) → 0. (C5)

Now, from the previous argument, 〈A−N 〉NL = 〈BN−1〉NL =
〈Ai〉NL = 〈Bj 〉NL for any i,j . Equation (C5) then implies
that 〈Ai〉NL = 〈Bj 〉NL = 0 for all the measurement directions
appearing in IN (NL).

Since we started the construction in Appendix B with an
arbitrary measurement vector [see Eq. (B6)], we must have,
for the maximal EPR2 decomposition considered here,

〈A〉NL|a = 〈B〉NL|b = 0 (C6)

for all a and b. This in turn implies that the marginals of the
local part are, as given in Eqs. (9) and (10),

〈A〉L|a = az, 〈B〉L|b = bz. (C7)

APPENDIX D: PROOF THAT THE BGS MODEL GIVES A
VALID EPR2 DECOMPOSITION FOR MEASUREMENT

SETTINGS SUCH THAT χ = 0 AND b �∈ Ha

In this Appendix we prove that when Alice’s and Bob’s
settings are such that χ = 0 but b does not lie in the Hardy
sector Ha of a [i.e., bz > az(1) or bz < az(−1)], then the BGS
EPR2 decomposition [31] is valid for all states. For that we
will show that Eq. (11) holds for all values of c.

Suppose indeed that χ = 0 and bz > az(1) = az+c

1+caz
� az.

Then by omitting the conditional settings we have

〈AB〉Q − c〈AB〉L = azbz + sa⊥b⊥ − c(1 − bz + az).

Remembering that b⊥ = √
1 − b2

z , we find ∂2

∂b2
z
[〈AB〉Q −

c〈AB〉L] = −sa⊥b−3
⊥ � 0 and therefore that ∂

∂bz
[〈AB〉Q −

c〈AB〉L] decreases with bz. Now observing that ∂
∂bz

[〈AB〉Q −
c〈AB〉L]|bz=az(1) = 0, we conclude that for bz � az(1),
∂

∂bz
[〈AB〉Q − c〈AB〉L] � 0. Hence 〈AB〉Q − c〈AB〉L de-

creases monotonically for bz ∈ [az(1),1] and therefore
takes values between [〈AB〉Q − c〈AB〉L]|bz=1 = (1 − c)az �
−(1 − c) and [〈AB〉Q − c〈AB〉L]|bz=az(1) = 1 − c. It follows
that |〈AB〉Q − c〈AB〉L| � 1 − c, i.e., that Eq. (11) is satisfied.

The case bz < az(−1) can be analyzed in a very similar
way. We thus conclude that when Alice’s and Bob’s settings
are such that χ = 0 but with b /∈ Ha, the BGS model gives a
valid EPR2 decomposition for all states.

APPENDIX E: DERIVATION OF ρa(t)

We consider the case χ = 0 and assume for now that b lies
in the Hardy sector Ha of a. The correlator reads

〈AB〉χ=0
L|a,b =

∫ 1

−1
dt ρa(t)(1 − |az(t) − bz|). (E1)
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To determine ρa(t) we will demand that condition (11) is
exactly saturated.

Proposition 1. If ρa(t) := s ln(γ )
4c

1+G(t)az√
1−G(t)2

, then 〈AB〉χ=0
Q|a,b −

c〈AB〉χ=0
L|a,b = 1 − c.

Proof. We will use the ansatz for t ∈ [−1,1],

ρa(t) = [1 + G(t)az]ρ(t), (E2)

where ρ(t) is a (normalized) even probability distribution, and
we further assume that∫ ±1

0
dt ρ(t)G(t) = 1 − s

2c

[
=1

2
G

(
1

2

)]
. (E3)

The ansatz (E2) ensures that ρa(t) is a well-defined probability
distribution and 〈A〉L = az as desired [which follow from the
facts that 1 + G(t)az � 0 and ρ(t)G(t) is an odd function],
while (E3) ensures that the proposition is true for a = b. At
the end we will have to check that condition (E3) holds and
that ρ(t) is indeed a probability distribution.

Since b is assumed to lie in Ha, bz can then be written as

bz = az(T ) for some T ∈ [−1,1]. (E4)

We have

〈AB〉χ=0
L|a,b = 1 −

∫ 1

−1
dt ρa(t)|az(t) − bz| (E5)

= 1 +
∫ T

−1
dt f (t) −

∫ 1

T

dt f (t), (E6)

with f (t) = ρa(t)[az(t) − bz] = ρ(t)[az − bz + (1 − azbz)
G(t)]. By decomposing the two integrals we find

〈AB〉χ=0
L|a,b = 1 +

∫ 0

−1
dtf (t) + 2

∫ T

0
dt f (t) −

∫ 1

0
dt f (t)

= 1 −
∫ 1

0
dt[f (t) − f (−t)] + 2

∫ T

0
dt f (t)

= 1 − (1 − azbz)
1 − s

c
+ 2

∫ T

0
dt f (t), (E7)

where we made use of the parity of ρ(t) and of assumption
(E3).

Demanding that 〈AB〉χ=0
Q − c〈AB〉χ=0

L = 1 − c with

〈AB〉χ=0
Q = azbz + s a⊥b⊥ (E8)

leads to

2c

∫ T

0
dt f (t) = sa⊥b⊥ − s(1 − azbz). (E9)

Expressing now bz as az+G(T )
1+G(T )az

, one gets

a⊥b⊥ = a2
⊥

1 + G(T )az

√
1 − G(T )2,

(E10)

az − bz = −a2
⊥

1 + G(T )az

G(T ), 1 − azbz = a2
⊥

1 + G(T )az

.

Using these expressions, Eq. (E9) leads to the integral equation∫ T

0
dt ρ(t)[G(T ) − G(t)] = s

2c
[1 −

√
1 − G(T )2], (E11)

which can be solved easily: e.g., after substituting

t → G(t), (E12)

one gets an equation with a linear kernel. The unique solution
reads

ρ(t) = s ln(γ )

4c

1√
1 − G(t)2

. (E13)

As can be checked, ρ(t) is an even, normalized probability
distribution on the interval [−1,1] and condition (E3) holds.

The choice ρa(t) := s ln(γ )
4c

1+G(t)az√
1−G(t)2

thus ensures that our

maximal EPR2 decomposition, with pL = pLC = c, is valid
for all measurement directions a and b such that χ = 0 when b
lies in the Hardy sectorHa of a. If χ = 0 but b /∈ Ha, our local
model gives the same correlation as the BGS model, which we
proved in Appendix D to also give a valid EPR2 decomposi-
tion. Note that if χ = π , the situation is quite similar to χ = 0
and one can prove again that our EPR2 decomposition is still
valid.

The question now is whether our maximal EPR2 decompo-
sition remains valid for all other settings when 0 < |χ | < π .
The difficulty in checking that Eq. (11) indeed holds is that
one needs to calculate 〈AB〉L|a,b, given by

〈AB〉L|a,b =
∫ 1

−1
dt ρa(t) EBGS

L (az(t),bz,χ ), (E14)

with

EBGS
L (az,bz,χ ) = 1 − 2|χ |

π

+ 2

π
az arctan

(
a⊥bz − azb⊥ cos χ

b⊥ sin |χ |
)

+ 2

π
bz arctan

(
azb⊥ − a⊥bz cos χ

a⊥ sin |χ |
)

(E15)

from the BGS model [31].
Unfortunately, we were not able to calculate the integral

(E14) explicitly. However, we carried intensive numerical
checks to convince ourselves that Eq. (11) always holds (up

θ
π
2

2
√

2

4

βmax

FIG. 3. (Color online) Maximum violation βmax of the Clauser-
Horne-Shimony-Holt inequality by the nonlocal part PNL of our EPR2
decomposition.
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to machine precision of absolute order 10−10) and therefore
that our maximal EPR2 decomposition is valid for all possible
measurement settings.

APPENDIX F: MAXIMAL VIOLATION OF THE CHSH
INEQUALITY OF THE NONLOCAL PART

The correlator of the nonlocal part PNL of our EPR2
decomposition is given by

ENL(a,b) := 〈AB〉NL|a,b = 〈AB〉Q|a,b − c 〈AB〉L|a,b

1 − c
.

We denote by βmax the maximum violation of the Clauser-
Horne-Shimony-Holt inequality [45]

βmax := max
a1 ,a2
b1,b2

|ENL(a1,b1) + ENL(a1,b2)

+ENL(a2,b1) − ENL(a2,b2)|. (F1)

In Fig. 3 the numerically determined values of βmax are
plotted for all states θ ∈ [0,π/2]. All states with θ < π

2

violate Tsirelson’s bound 2
√

2 [46], approaching the algebraic
maximum of 4 for θ → 0; this proves that the corresponding
nonlocal parts PNL are nonquantum.
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[14] Y.-C. Liang, T. Vértesi, and N. Brunner, Phys. Rev. A 83, 022108

(2011).
[15] T. Maudlin, Proceedings of the Biennial Meeting of the Phi-

losophy of Science Association (University of Chicago Press,
Chicago, 1992), p. 404.

[16] G. Brassard, R. Cleve, and A. Tapp, Phys. Rev. Lett. 83, 1874
(1999).

[17] M. Steiner, Phys. Lett. A 270, 239 (2000).
[18] A. Yao, in Proceedings of the Eleventh Annual ACM Symposium

on Theory of Computing (ACM, New York, 1979), pp. 209–213.

[19] J. Roland and M. Szegedy, Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science, edited by
S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas,
and W. Thomas (Springer, Berlin, Heidelberg, 2009), Vol. 5555,
pp. 738–749.

[20] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod.
Phys. 82, 665 (2010).

[21] B. F. Toner and D. Bacon, Phys. Rev. Lett. 91, 187904
(2003).

[22] A. C. Elitzur, S. Popescu, and D. Rohrlich, Phys. Lett. A 162,
25 (1992).

[23] V. Capasso, D. Fortunato, and F. Selleri, Int. J. Theor. Phys. 7,
319 (1973).

[24] N. Gisin, Phys. Lett. A 154, 201 (1991).
[25] J. Barrett, A. Kent, and S. Pironio, Phys. Rev. Lett. 97, 170409

(2006).
[26] P. Pearle, Phys. Rev. D 2, 1418 (1970).
[27] S. Braunstein and C. Caves, Ann. Phys. (NY) 202, 22

(1990).
[28] It was also shown in Ref. [25] that this result is true for maximally

entangled two-part states of any dimension.
[29] V. Scarani, Phys. Rev. A 77, 042112 (2008).
[30] V. Scarani, arXiv:0712.2307v1 [quant-ph].
[31] C. Branciard, N. Gisin, and V. Scarani, Phys. Rev. A 81, 022103

(2010).
[32] On a technical note, in order for the expectation values 〈AB〉Qa,b

to take the form of Eq. (4), the y directions of Alice and Bob’s
Bloch spheres should be defined with opposite directions (in
other words, with standard definitions, one needs to change, for
instance, throughout the paper, b to b′, its reflection with respect
to the xz plane; see, e.g., Ref. [31]).

[33] A. Fine, Phys. Rev. Lett. 48, 291 (1982).
[34] R. Werner and M. Wolf, Quantum Inf. Comput. 1, 1 (2001).
[35] For technical reasons we assume from now on that c < 1; note

that for c = 1, the state (2) is a product state and therefore is
fully local: pLC = 1 = c.

[36] L. Hardy, Phys. Rev. Lett. 71, 1665 (1993).
[37] D. Boschi, S. Branca, F. De Martini, and L. Hardy, Phys. Rev.

Lett. 79, 2755 (1997).
[38] Colbeck and Renner [R. Colbeck and R. Renner, Phys. Rev. Lett.

101, 050403 (2008)] investigated models in which at least one
party uses such a local nonshared random variable. The methods

012104-8

http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1038/18296
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1088/1367-2630/11/4/045021
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1088/1751-8113/44/9/095305
http://dx.doi.org/10.1103/PhysRevA.83.022108
http://dx.doi.org/10.1103/PhysRevA.83.022108
http://dx.doi.org/10.1103/PhysRevLett.83.1874
http://dx.doi.org/10.1103/PhysRevLett.83.1874
http://dx.doi.org/10.1016/S0375-9601(00)00315-7
http://dx.doi.org/10.1103/RevModPhys.82.665
http://dx.doi.org/10.1103/RevModPhys.82.665
http://dx.doi.org/10.1103/PhysRevLett.91.187904
http://dx.doi.org/10.1103/PhysRevLett.91.187904
http://dx.doi.org/10.1016/0375-9601(92)90952-I
http://dx.doi.org/10.1016/0375-9601(92)90952-I
http://dx.doi.org/10.1007/BF00669912
http://dx.doi.org/10.1007/BF00669912
http://dx.doi.org/10.1016/0375-9601(91)90805-I
http://dx.doi.org/10.1103/PhysRevLett.97.170409
http://dx.doi.org/10.1103/PhysRevLett.97.170409
http://dx.doi.org/10.1103/PhysRevD.2.1418
http://dx.doi.org/10.1016/0003-4916(90)90339-P
http://dx.doi.org/10.1016/0003-4916(90)90339-P
http://dx.doi.org/10.1103/PhysRevA.77.042112
http://arXiv.org/abs/arXiv:0712.2307v1
http://dx.doi.org/10.1103/PhysRevA.81.022103
http://dx.doi.org/10.1103/PhysRevA.81.022103
http://dx.doi.org/10.1103/PhysRevLett.48.291
http://dx.doi.org/10.1103/PhysRevLett.71.1665
http://dx.doi.org/10.1103/PhysRevLett.79.2755
http://dx.doi.org/10.1103/PhysRevLett.79.2755
http://dx.doi.org/10.1103/PhysRevLett.101.050403
http://dx.doi.org/10.1103/PhysRevLett.101.050403


LOCAL CONTENT OF ALL PURE TWO-QUBIT STATES PHYSICAL REVIEW A 86, 012104 (2012)

used therein can be adapted to show that the nonlocal part of the
following maximal decomposition cannot have any such local
nonshared random variables.

[39] N. Brunner, N. Gisin, and V. Scarani, New J. Phys. 7, 88 (2005).
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