2,945 research outputs found

    PERSONAL CRIME AND DELINQUENCY RATES IN LOS ANGELES: A SOCIAL AREA ANALYSIS

    Get PDF
    This paper compares the effects of different measures of the social and physical composition of census tracts on their crime rates for Los Angeles, 1970. The analysis uses three measures of tract composition based on the Shevky-Bell social area typology. In addition to the social rank, familism, and ethnicity measures, several measures of the physical composition of census tracts are included in a multiple regression analysis. As expected, social rank and the ethnicity measures have strong effects on the number ofpersonal crimes reported to the police and on the number of juvenile arrests. Contrary to much previous research, familism does not have a significant effect on either crime measure

    Loophole-free Bell test based on local precertification of photon's presence

    Get PDF
    A loophole-free violation of Bell inequalities is of fundamental importance for demonstrating quantum nonlocality and long-distance device-independent secure communication. However, transmission losses represent a fundamental limitation for photonic loophole-free Bell tests. A local precertification of the presence of the photons immediately before the local measurements may solve this problem. We show that local precertification is feasible by integrating three current technologies: (i) enhanced single-photon down-conversion to locally create a flag photon, (ii) nanowire-based superconducting single-photon detectors for a fast flag detection, and (iii) superconducting transition-edge sensors to close the detection loophole. We carry out a precise space-time analysis of the proposed scheme, showing its viability and feasibility.Comment: REVTeX4, 7 Pages, 1 figur

    Transfer of Nonclassical Properties from A Microscopic Superposition to Macroscopic Thermal States in The High Temperature Limit

    Get PDF
    We present several examples where prominent quantum properties are transferred from a microscopic superposition to thermal states at high temperatures. Our work is motivated by an analogy of Schrodinger's cat paradox, where the state corresponding to the virtual cat is a mixed thermal state with a large average photon number. Remarkably, quantum entanglement can be produced between thermal states with nearly the maximum Bell-inequality violation even when the temperatures of both modes approach infinity.Comment: minor corrections, acknowledgments added, Phys.Rev.Lett., in pres

    The Use of Surface Electromagnetic Waves to Measure Materials Properties

    Get PDF
    An Elementary Introduction to Surface Electromagnetic Waves (SEW) is Presented. the Emphasis is on Those Features of SEW Which Make Them Useful for Measuring Optical Properties of Thin Layers on Metals. the So-Called Two-Prism Technique for Making Such Measurements is Discussed, Some Preliminary Experimental Results Are Given, and Some Possible Applications Are Presented. © 1975

    High-Fidelity Teleportation of Independent Qubits

    Get PDF
    Quantum teleportation is one of the essential primitives of quantum communication. We suggest that any quantum teleportation scheme can be characterized by its efficiency, i.e. how often it succeeds to teleport, its fidelity, i.e. how well the input state is reproduced at the output, and by its insensitivity to cross talk, i.e. how well it rejects an input state that is not intended to teleport. We discuss these criteria for the two teleportation experiments of independent qubits which have been performed thus far. In the first experiment (Nature {\bf 390},575 (1997)) where the qubit states were various different polarization states of photons, the fidelity of teleportation was as high as 0.80 ±\pm 0.05 thus clearly surpassing the limit of 2/3 which can, in principle, be obtained by a direct measurement on the qubit and classical communication. This high fidelity is confirmed in our second experiment (Phys. Rev. Lett. {\bf 80}, 3891 (1998)), demonstrating entanglement swapping, that is, realizing the teleportation of a qubit which itself is still entangled to another one. This experiment is the only one up to date that demonstrates the teleportation of a genuine unknown quantum state.Comment: 13 pages, Latex, 5 figures(eps), to appear in Journal of Modern Optic

    Comparison of LOQC C-sign gates with ancilla inefficiency and an improvement to functionality under these conditions

    Get PDF
    We compare three proposals for non-deterministic C-sign gates implemented using linear optics and conditional measurements with non-ideal ancilla mode production and detection. The simplified KLM gate [Ralph et al, Phys.Rev.A {\bf 65}, 012314 (2001)] appears to be the most resilient under these conditions. We also find that the operation of this gate can be improved by adjusting the beamsplitter ratios to compensate to some extent for the effects of the imperfect ancilla.Comment: to appear in PR

    Violation of Bell's inequality using classical measurements and non-linear local operations

    Get PDF
    We find that Bell's inequality can be significantly violated (up to Tsirelson's bound) with two-mode entangled coherent states using only homodyne measurements. This requires Kerr nonlinear interactions for local operations on the entangled coherent states. Our example is a demonstration of Bell-inequality violations using classical measurements. We conclude that entangled coherent states with coherent amplitudes as small as 0.842 are sufficient to produce such violations.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    Bell Inequalities in Phase Space and their Violation in Quantum Mechanics

    Full text link
    We derive ``Bell inequalities'' in four dimensional phase space and prove the following ``three marginal theorem'' for phase space densities ρ(q,p)\rho(\overrightarrow{q},\overrightarrow{p}), thus settling a long standing conjecture : ``there exist quantum states for which more than three of the quantum probability distributions for (q1,q2)(q_1,q_2), (p1,p2)(p_1,p_2), (q1,p2)(q_1,p_2) and (p1,q2)(p_1,q_2) cannot be reproduced as marginals of a positive ρ(q,p)\rho(\overrightarrow{q},\overrightarrow{p})''. We also construct the most general positive ρ(q,p)\rho(\overrightarrow{q},\overrightarrow{p}) which reproduces any three of the above quantum probability densities for arbitrary quantum states. This is crucial for the construction of a maximally realistic quantum theory.Comment: 11 pages, latex, no figure
    corecore