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Comparison of linear optics quantum-computation control-sign gates with ancilla inefficiency
and an improvement to functionality under these conditions
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We compare three proposals for nondeterministic control-sign gates implemented using linear optics and
conditional measurements with nonideal ancilla mode production and detection. The simplified Knill-
Laflamme-Milburn gate@Ralphet al., Phys. Rev. A65, 012314~2001!# appears to be the most resilient under
these conditions. We also find that the operation of this gate can be improved by adjusting the beam splitter
ratios to compensate to some extent for the effects of the imperfect ancilla.
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I. INTRODUCTION

Linear optics quantum computation~LOQC! @1# offers an
elegant way of implementing quantum gates on optical
bits using the inherent nonlinearity of conditional measu
ments. This is achieved by introducing ancilla photons wh
interact with the linear circuit and are then detected. Ho
ever, it has been shown that the accuracy of the gate op
tion is strongly dependent on the quality of the detect
used to detect the ancilla photons@2#.

Three distinct architectures have now been suggested
implementing the fundamental two qubit gate, the contr
sign ~C-sign! gate@3–5#. It is natural to ask first whether a
these architectures are equally sensitive to ancilla dete
efficiency and second if it is possible to optimize gate ope
tion to counter~to some extent! the effects of detector inef
ficiency. In this paper we address these questions and inc
in our analysis the converse issue of inefficiency in anc
production.

We begin in Sec. II by presenting our analysis techniq
In Sec. III we introduce the three versions of the C-sign g
and then present our comparative analysis. In Sec. IV
discuss improvements to the least sensitive of these g
We conclude in Sec. V.

II. GATE ANALYSIS

In performing the analysis of the gates we consider id
qubits sent into a nondeterministic LOQC gate consisting
a linear optical circuit interacting with prepared anci
modes. The ancilla modes are then detected and the sta
the output modes is kept if the measurement success
matches the condition required for correct operation. It
assumed that mode matching errors and loss in the op
circuit can be neglected, but that inefficiency in the prod
tion and detection of the ancilla cannot be neglected. W
the ancilla detection result indicates successful gate op
tion the output state is compared with the expected ou
via their fidelity

^CexpuroutuCexp&,
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whererout is the output density operator anduCexp& is the
expected output. The fidelity is calculated in this way for
input states and the minimum fidelity is found. This is th
taken as the figure of merit used for comparison. Under id
conditions the fidelity is one for all inputs but lower numbe
indicate reduced accuracy of the gate. Inefficient product
and detection in ancilla modes are expected to have two
fects: reduction in the probability of successful gate ope
tion and a reduction in the fidelity when successful operat
occurs.

Detector and input inefficiencies are simulated by int
ducing a beam splitter with a reflectivity equal to the ef
ciency. The reflected mode of each beam splitter remain
the system and the transmitted mode is lost. No informat
can be retrieved in the loss mode so a partial trace is
formed over this mode, leaving the system in a mixed st

For the sake of computational simplicity all the gates a
analyzed in a single rail format@6#, where the zero-photon
stateu0& represents logical zero and the single-photon s
u1& represents logical one. In single rail format the C-si
operation is defined by

u0&u0&→u0&u0&,

u0&u1&→u0&u1&,

u1&u0&→u1&u0&,

u1&u1&→2u1&u1&.

Single qubit manipulations are difficult using single ra
logic. Thus dual rail logic@7# is normally adopted in practice
with the qubit defined across two optical modes. The logi
zero is represented by a single-photon occupation of
mode with the other in the vacuum state. The logical one
the reverse of the logical zero state with a single photon
the other mode. In LOQC, dual rail logic is often imple
mented using the horizontal and vertical polarization mo
of a single spatial mode. For the special case of a C-sign
the dual rail form is equivalent to the single rail form, ju
with added modes which do not participate in any inter
tions ~see Fig. 1!. This can be seen from the definition o
C-sign operation in the dual rail format~written in photon
occupation form!:
©2003 The American Physical Society13-1
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~ u1&u0&)~ u1&u0&)→~ u1&u0&)~ u1&u0&),

~ u1&u0&)~ u0&u1&)→~ u1&u0&)~ u0&u1&),

~ u0&u1&)~ u1&u0&)→~ u0&u1&)~ u1&u0&),

~ u0&u1&)~ u0&u1&)→2~ u0&u1&)~ u0&u1&).

The first two bracketed states represent the first qubit w
the second two represent the second qubit. Note that if
first mode is removed from all the qubits in the dual r
format then the single rail format is obtained. Because
extra modes do not participate in C-sign gates~the assumed
sources of loss are not present!, single rail and dual rail fi-
delities are identical. Once in the dual rail format, controlle
NOT operation can be constructed by mixing the two tar
modes~the modes on which the controlled operation is to
applied! on a 50:50 beam splitter before and after the C-s
operation.

The fidelity of each of the gates was calculated as follo
The operator evolution equations of each particular gate w
calculated and inverted. The density operator for the requ
input state~including ancilla! was evolved using the solu
tions from the inverted equations. The loss modes are tra
over, and detected modes are projected onto the requ
state. The remaining density operatorr̂out describes the out
put state which is now normalized to have Tr(r̂out)51. This
renormalization is because we only wish to consider the
curacy of the gate assuming a successful detection even
success rate is considered separately. The fidelity of the
is calculated by finding the minimum of^Cexpur̂outuCexp&
over all input states whereuCexp& is the expected outpu
state from the used input stateuC in&. The general input state
uC in& was written as follows:

FIG. 2. The nondeterministic gate which performs the opera
described by Eq.~2!. The beam splitter reflectivities areh155
23A2 andh25(32A2)/7.

FIG. 1. This diagram shows that the dual rail form is equival
to the single rail form with extra modes. In dual rail format the lin
represent two modes, usually the orthogonal polarization mode
a single spatial mode. In the single rail format the lines repres
one mode and the qubit is encoded in the photon number.
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uC in&5cosau00&1sina cosbu10&1sina sinb cosgu01&

1sina sinbsingu11&. ~1!

The advantage of writing the state in this form is that t
optimization for finding the minimum fidelity can be pe
formed over the variablesa, b, and g instead of a con-
strained optimization.

III. GATE COMPARISONS

The three C-sign gates that were compared in our anal
are as follows.

KLM gate.The original nondeterministic C-sign gate in
troduced by Knill, Laflamme, and Milburn@1# is based on
the operation of the so-called nonlinear sign shift~NS! gate,
which performs the transformation

au0&1bu1&1gu2&→au0&1bu1&2gu2&. ~2!

A simplification of the original design, shown in Fig. 2, wa
introduced by Ralphet al. @3# and is used in our calculations
Vacuum (0) and single (1) photon states are injected into

n

FIG. 3. The ~simplified! KLM control-sign gate@3#. The un-
numbered beam splitters have reflectivitiesh15523A2 and h2

5(32A2)/7.

FIG. 4. The Knill control-sign gate@4#. The reflectivities are
h15

1
3 andh25

1
6 (31A6). Note that the beam splitter conventio

here is different~see text!.
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ancilla modes. The gate succeeds when the output ancilla
detected to be in the same state as was injected. C-sign
eration is achieved by placing an NS gate in each arm o
balanced Mach Zehnder interferometer as shown in Fig
Photon bunching in the interferometer then produces the
shift when both control and target modes are in theu1& state.
The probability of success for the gate is approximat
1/20.

Knill gate. Our second gate shown in Fig. 4 was intr
duced by Knill @4#. It directly implements the C-sign opera
tion. In contrast to the KLM gate it has no classical inte
ferometric elements and requires only two ancilla, bo
prepared in single-photon states. The gate succeeds whe
output ancilla are both measured to be single-photon sta
The probability for success of the Knill gate is 1/13.5.

PJF gate.Our third gate was introduced by Pittman, J
cobs, and Franson@5# and is shown in Fig. 5. A related gat
is that introduced by Koashiet al. @8#. Unlike the other two

FIG. 6. A comparison of the minimum fidelity of the three gat
~PJF, solid; Knill, dashed; KLM, dot-dashed! as a function of the
detector efficiencies.

FIG. 5. The Pittman,et al. C-sign gate@5#. The schematic here
uses normal beam splitters with reflectivities of 0.5. The dete
pairs must measure one photon in total. The ancilla modes are
pared asua1a2a3a4&→(1/A2)(u0110&1u1001&).
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gates, the PJF gate requires entanglement between the
ancilla modes. All beam splitters have a reflectivity of 0
For the ancilla modes which are detected, the pairs of de
tors shown must have exactly one photon, total, in the t
modes for the gate to succeed. Rotations to the output
be necessary depending on which mode the single photo
found. The gate functionality is driven by the entangleme
in the ancilla modes. The state of the four ancilla modes
~in the form ua1a2a3a4&) (1/A2)(u0110&1u1001&). The
probability of success of the PJF gate is 1/4.

Throughout the remainder of this paper, the gates will
called by the names just introduced. Note that the beam s
ter conventions differ between the proposals. The KLM a
PJF gates have beam splitters which have a sign chang
reflection off the gray side but the Knill gate has a si
change on transmission, for beams incident on the black s

FIG. 7. A comparison of the minimum fidelity of the three gat
~PJF, solid; Knill, dashed; KLM, dot-dashed! as a function of the
input efficiencies.

FIG. 8. This plot shows the minimum fidelity (z axis! of the
modified KLM gate with detector efficiency of 0.9 and perfect a
cilla input for a range of beam splitter ratios of the two NS ga
(x-y axes!. The x-y axes show the change in the reflectivity fro
the normal reflectivities of the NS gate. The important feature
this plot is the increasing fidelity ash1 is increased. The mos
positive value ofh1 shown here is the maximum value it can tak

r
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FIG. 9. The graphs in this figure show many cases in which the fidelity of the modified KLM gate can be improved. The top row
a simulation with detector efficiency considered only. The graph on the left shows the fidelity of the gate without any adjustments
solid line. The dashed line in this plot shows the fidelity reached when optimized againsth2 (h151). The amount by whichh2 is changed
is shown in the plot on the right. These data are plotted with the detector efficiency along the abscissa. The other two sets of gra
the same for source efficiency and finally detector and source efficiency both present but equal.
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Figure 6 shows the results of the fidelity calculations~as
described in the preceding section! for the three gates whe
only the detectors exhibit loss~i.e., perfect state input!. The
parameter along the abscissa is the detector efficiency
the ordinate shows the fidelity of the gate at that efficien
The solid line represents the PJF gate, the dashed line sh
the Knill gate, and the dot-dashed line shows the KLM ga

All gates show a quite steep decrease in minimum fide
as a function of efficiency, illustrating the sensitivity o
LOQC gates to this sort of loss~recall though that this is
minimum fidelity and so represents a worst case scena!.
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For detector efficiencies greater than about 93% the K
gate gives marginally better performance, but for detec
efficiencies below this value the KLM gate shows a bet
fidelity by a significant margin.

A similar analysis can be done with ancilla productio
efficiencies. Figure 7 shows this analysis and has the s
gate-plot style correspondence as in Fig. 6. Once aga
steep decrease in minimum fidelity as a function of e
ciency is observed. In this figure it can be seen that the K
gate has the highest minimum fidelity for the range of e
ciencies shown. From the figures we may conclude that
3-4
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FIG. 10. These plots are of the same form as those in Fig. 9. They are a zoomed region of the detector and source losses cons~but
equal! near unity efficiency. This shows that settingh151 can lead to an improvement until an efficiency of about 99.5% is reached.
dots shown on the left plot are the optimized fidelities when bothh1 andh2 are varied.
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assessed by minimum fidelity, the simplified KLM gate is
general the most forgiving in the presence of ancilla prod
tion and detection inefficiencies.

IV. GATE FIDELITY IMPROVEMENT

One effect of reduced ancilla efficiency is to bias t
probability of successful gate operation for different inp
states. This is a detrimental effect as some information ab
the input state is thus leaked through the statistics of
projective measurements success. In turn this results in b
ing of the fidelities of the gate for different inputs. For e
ample, with the KLM gate the fidelity for theu0&u0& input
state is unaffected by ancilla inefficiencies while theu0&u1&
andu1&u0& states are most strongly affected, with these sta
giving the minimum fidelity for this gate. This suggests
may be possible to improve upon the fidelity gained her
one were to adjust the elements in the gate to compensat
the biasing of gate functionality incurred due to the anc
inefficiencies. Using this idea as a guide we have impro
the performance of the KLM gate.

The KLM gate is constructed from two NS gates, whi
ideally perform the operation given in Eq.~2!. The gate has
two parameters which can be altered: the reflectivities
each of the two beam splitters. Using the same techniqu
above for calculating the gate fidelity, we can optimize t
fidelity with respect to these beam splitter ratios for fix
detector and input efficiency. It is assumed that the two
gates in the whole C-sign gate have the same beam sp
ratios, maintaining the symmetry of the gate.

Figure 8 shows the fidelity of the simplified KLM gat
when the prepared ancilla are kept the same and the dete
scheme is the same as proposed, but the beam splitter r
in the two NS gates are varied. The ‘‘Dh1’’ and ‘‘ Dh2’’ axes
show the change in the beam splitter ratios from their ini
values; that is, for the point~0,0! the beam splitter ratios
have not changed. Thez axis shows the fidelity of the gate
The assumed loss with this diagram is 90% detector e
ciency and perfect input efficiency.

The important feature of this plot is the increase of fidel
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with h1. To the far right of theh1 axis is the limit of the
allowed values forh1. This limit is imposed by the necessit
that reflectivities lie between zero and one. So in this ca
the fidelity can be optimized by choosing the first beam sp
ter perfectly reflective. Doing this, in effect, removes t
detector which measures zero photons and removes
vacuum input. Inefficient equipment is removed from t
gate and the gate complexity is reduced. All that remain
to optimize the fidelity along theDh2 axis. This feature of
increasing fidelity withh1 is seen here with detector efficien
cies up to about 99%.

The increasing fidelity withh1 is not seen with a lossy
source. However, when the source efficiency drops sligh
below unity the relationship between the gate fidelity andh1

is almost flat. For source efficiency of about 98%, the i
provement in the fidelity is only about 0.01 at the actu
optimized value ofh1 and h2 compared with settingh1
51. So for simplicity, the fidelity will be considered opt
mized ath151 for both lossy sources and detectors.

Figure 9 shows the gate fidelity~optimized! with h151
andh2 at the optimum value. The graphs on the left show
fidelity without any alterations to the beam splitters~solid
line! and the optimized fidelity~dashed line!. The plots on
the right show what theh2 value is for this optimized fidel-
ity. There are three cases shown in Fig. 9. The first is per
source efficiency and variable detector efficiency. The s
ond is perfect detectors and variable source efficiency. In
last case both the source and detectors are varied but
have equal efficiencies.

As an example of the small difference between usingh1
51 and varying it for nonunity source efficiency, the fideli
shown here for perfect detectors at 98% source efficienc
0.956. When bothh1 and h2 are varied a fidelity of 0.959
can be reached usingh150.7703 andh250.1838. When a
source efficiency of 0.8 is used, the fidelity reported here
0.723 and a slight improvement~in the fourth decimal place!
can be achieved at the valuesh150.9720 andh250.1123.

Figure 10 shows similar evidence thath1 should be set to
unity for all but the highest efficiencies. The figure is
3-5
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LUND, BELL, AND RALPH PHYSICAL REVIEW A 68, 022313 ~2003!
zoomed region of the plots from Fig. 9 where detector a
source efficiencies are equal and higher than 0.99. Note f
these figures that there is an improvement in fidelity w
h151 until efficiencies reach about 99.5%. Once again
slight improvement in these figures can be gained by vary
h1 ~which is possibly the origin of the slight downward
bending of the improved fidelity curve!.

Changing the parameters of the gate will change the p
ability that the gate will function successfully, as shown
Fig. 11 for the case where detector and source losses
equal. The probability of the gate functioning does not dr
below about15 the original value for detector and input effi
ciencies above about 0.8.

This technique of tuning gate parameters to counter

FIG. 11. This plot shows the probability of success of the KL
gate when at the optimized value forh2 and settingh151. The
case considered here is when detector and source losses are p
and equal in magnitude. The solid line shows the probability
success of the gate with the beam splitter ratios set to the u
values and with no losses.
ne

s.
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effects of ancilla inefficiency could also be applied to t
Knill and PJF gates in some form. However, it is not so cle
how to proceed for these gates and it could be a comp
tionally expensive task. Since the KLM gate gave the m
encouraging results in the default setup and its param
space is relatively small, its optimization was pursued he

V. CONCLUSION

Three LOQC C-sign gates have been compared using
minimum fidelity over all possible input states as the figu
of merit. The KLM gate appears to be the most resilient
photon loss in ancilla detection for efficiencies below 95
and input loss for all efficiencies. The gate fidelity for th
KLM gate can be improved by adjusting the beam split
ratios of the gate. In all but the most efficient conditions~loss
less than 0.5%!, it is best to remove the first beam splitte
from each of the two NS gates that make up the C-sign g
and adjust the second until optimum fidelity is reached. T
actually reduces the complexity of the gate considerably
removing two photon counters. The improvement in mi
mum fidelity can be quite significant. Single-photon produ
tion and detection efficiencies around 90% are not unreas
able in the short term. Under such conditions the optimiz
KLM gate could be expected to give fidelities>0.8 for all
operations, assuming all other imperfections can be
glected.

ACKNOWLEDGMENTS

We acknowledge useful discussions with G. J. Milbu
and A. Gilchrist. This work was supported by the Australi
Research Council and ARDA.

sent
f
al
@1# E. Knill, R. Laflamme, and G. Milburn, Nature~London! 409,
46 ~2001!.

@2# S. Glancy, J.M. LoSecco, H.M. Vasconcelos, and C.E. Tan
Phys. Rev. A65, 062317~2002!.

@3# T.C. Ralph, A.G. White, W.J. Munro, and G.J. Milburn, Phy
Rev. A65, 012314~2001!.

@4# E. Knill, Phys. Rev. A66, 052306~2002!.
r,

@5# T.B. Pittman, B.C. Jacobs, and J.D. Franson, Phys. Rev. A64,
062311~2001!.

@6# A.P. Lund and T.C. Ralph, Phys. Rev. A66, 032307~2002!.
@7# G.J. Milburn, Phys. Rev. Lett.62, 2124~1988!.
@8# M. Koashi, T. Yamamoto and N. Imoto, Phys. Rev. A63,

030301~2001!.
3-6


