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Comparison of linear optics quantum-computation control-sign gates with ancilla inefficiency
and an improvement to functionality under these conditions
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We compare three proposals for nondeterministic control-sign gates implemented using linear optics and
conditional measurements with nonideal ancilla mode production and detection. The simplified Knill-
Laflamme-Milburn gaté¢Ralphet al, Phys. Rev. 265, 012314(2001)] appears to be the most resilient under
these conditions. We also find that the operation of this gate can be improved by adjusting the beam splitter
ratios to compensate to some extent for the effects of the imperfect ancilla.
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[. INTRODUCTION wherep,, is the output density operator afi#,,) is the
expected output. The fidelity is calculated in this way for all

Linear optics quantum computatighOQC) [1] offers an  input states and the minimum fidelity is found. This is then
elegant way of implementing quantum gates on optical qutaken as the figure of merit used for comparison. Under ideal
bits using the inherent nonlinearity of conditional measure-conditions the fidelity is one for all inputs but lower numbers
ments. This is achieved by introducing ancilla photons whichindicate reduced accuracy of the gate. Inefficient production
interact with the linear circuit and are then detected. How-and detection in ancilla modes are expected to have two ef-
ever, it has been shown that the accuracy of the gate operéects: reduction in the probability of successful gate opera-
tion is strongly dependent on the quality of the detectordion and a reduction in the fidelity when successful operation
used to detect the ancilla photof$. occurs.

Three distinct architectures have now been suggested for Detector and input inefficiencies are simulated by intro-
implementing the fundamental two qubit gate, the control-ducing a beam splitter with a reflectivity equal to the effi-
sign (C-sign gate[3-5]. It is natural to ask first whether all ciency. The reflected mode of each beam splitter remains in
these architectures are equally sensitive to ancilla detectdhe system and the transmitted mode is lost. No information
efficiency and second if it is possible to optimize gate operacan be retrieved in the loss mode so a partial trace is per-
tion to counter(to some extentthe effects of detector inef- formed over this mode, leaving the system in a mixed state.
ficiency. In this paper we address these questions and include For the sake of computational simplicity all the gates are
in our analysis the converse issue of inefficiency in ancillaanalyzed in a single rail formd6], where the zero-photon
production. state|0) represents logical zero and the single-photon state

We begin in Sec. Il by presenting our analysis technique|1) represents logical one. In single rail format the C-sign
In Sec. Il we introduce the three versions of the C-sign gateperation is defined by
and then present our comparative analysis. In Sec. IV we
discuss improvements to the least sensitive of these gates. |0)|0)—|0)|0),

We conclude in Sec. V.
10)[1)—10)|1),
Il. GATE ANALYSIS
, , o 11)[0)—11)|0),
In performing the analysis of the gates we consider ideal
gubits sent into a nondeterministic LOQC gate consisting of [1)|1)— —|1)]1).
a linear optical circuit interacting with prepared ancilla
modes. The ancilla modes are then detected and the stateSithgle qubit manipulations are difficult using single rall
the output modes is kept if the measurement successfullpgic. Thus dual rail logi¢7] is normally adopted in practice
matches the condition required for correct operation. It iswith the qubit defined across two optical modes. The logical
assumed that mode matching errors and loss in the opticakro is represented by a single-photon occupation of one
circuit can be neglected, but that inefficiency in the produc-mode with the other in the vacuum state. The logical one is
tion and detection of the ancilla cannot be neglected. Whethe reverse of the logical zero state with a single photon in
the ancilla detection result indicates successful gate operaghe other mode. In LOQC, dual rail logic is often imple-
tion the output state is compared with the expected outpuinented using the horizontal and vertical polarization modes
via their fidelity of a single spatial mode. For the special case of a C-sign gate
the dual rail form is equivalent to the single rail form, just
(Y expl Poutl Pexp» with added modes which do not participate in any interac-
tions (see Fig. 1 This can be seen from the definition of
C-sign operation in the dual rail formavritten in photon
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C-sign = C-sign 0 (l\ 1 /\

Dual Rail Single Rail

FIG. 1. This diagram shows that the dual rail form is equivalent
to the single rail form with extra modes. In dual rail format the lines
represent two modes, usually the orthogonal polarization modes of
a single spatial mode. In the single rail format the lines represent
one mode and the qubit is encoded in the photon number.

Control in Control out

Target in Target out
2
([2)[0))([1)[0))—(11)[0))(|1)[0}),
(1210))(10)[1))—(|1)[0))(|0)[1)), ° v ‘ \/
([0)[1))(12)[0))—(|0)[1))(|1)|0)), o "
(10)]2))(|0)] 1)) — — (|0Y| 1)) (|0)|1)). FIG. 3. The(simplified KLM control-sign gate[3]. The un-

numbered beam splitters have reflectivitieg=5—32 and 7,

The first two bracketed states represent the first qubit while” (3~ 2.
the second two represent the second qubit. Note that if the . . )
first mode is removed from all the qubits in the dual rail |Vin)=C0sx|00)+sina cosp|10)+sina sinB cosy|01)
format then the single rail format is obtained. Because the ; ; ;
. . : + .
extra modes do not participate in C-sign gateee assumed sinasin3siny|11) @

sources of loss are not presgriingle rail and dual rail fi- 15 a4yantage of writing the state in this form is that the
delities are identical. Once in the dual rail format, Contr°|led'optimization for finding the minimum fidelity can be per-

NOT operation can be cqnstructed by mixing thel two targeto med over the variables, B, and y instead of a con-
modes(the modes on which the controlled operation is to bestrained optimization.
applied on a 50:50 beam splitter before and after the C-sign
operation.

The fidelity of each of the gates was calculated as follows. lll. GATE COMPARISONS
The operator evolution equations of each particular gate were The three C-sign gates that were compared in our analysis
calculated and inverted. The density operator for the requiregye as follows.
input state(including ancilla was evolved using the solu- K| M gate. The original nondeterministic C-sign gate in-
tions from the inverted equations. The loss modes are tracqghquced by Knill, Laflamme, and Milburfil] is based on
over, and detected modes are projected onto the requiragle operation of the so-called nonlinear sign st¥g) gate,

state. The remaining density operatgy,; describes the out- which performs the transformation
put state which is now normalized to have dg()=1. This
renormalization is because we only wish to consider the ac- al0)+ B|1)+ v|2)—«|0)+ B[1) - ¥]2). 2
curacy of the gate assuming a successful detection event; the =~ = o ) o
success rate is considered separately. The fidelity of the gafsSimplification of the original design, shown in Fig. 2, was
is calculated by finding the minimum df¥ |A v ) introduced by Ralplet al.[3] and is used in our calculations.

. y 9 . explPout| ¥ex Vacuum (0) and single (1) photon states are injected into the
over all input states wherg¥,,,) is the expected output

state from the used input stdt&;,). The general input state

. Control i Control out
|W;,) was written as follows: omr 2

g 1 Target in Target out

o AN
1 >

Ni N2
input output 1 "1

FIG. 2. The nondeterministic gate which performs the operation FIG. 4. The Knill control-sign gaté4]. The reflectivities are
described by Eq(2). The beam splitter reflectivities arg;=5 ;=% and 7,=5(3+6). Note that the beam splitter convention
—342 and7,=(3—2)/7. here is differen(see text
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Source Efficiency
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FIG. 7. A comparison of the minimum fidelity of the three gates
" (PJF, solid; Knill, dashed; KLM, dot-dasheds a function of the
Target in input efficiencies.

FIG. 5. The Pittmanet al. C-sign gate5]. The schematic here gates, the PJF gate requires entanglement between the two

uses normal beam splitters with reflectivities of 0.5. The detectoranCiIIa mOd,eS' All beam ;plitters have a reﬂeCti\(ity of 0.5.
pairs must measure one photon in total. The ancilla modes are pr&0f the ancilla modes which are detected, the pairs of detec-

pared ada,;a,a5a,)— (1/12)(/0110 +|1001). tors shown must have exactly one photon, total, in the two

modes for the gate to succeed. Rotations to the output may
ancilla modes. The gate succeeds when the output ancilla ak& necessary depending on which mode the single photon is
detected to be in the same state as was injected. C-sign ofpund. The gate functionality is driven by the entanglement
eration is achieved by placing an NS gate in each arm of & the ancilla modes. The state of the four ancilla modes is
balanced Mach Zehnder interferometer as shown in Fig. 3in the form |a,a,asas)) (1/4/2)(0110+|1003). The
Photon bunching in the interferometer then produces the sigprobability of success of the PJF gate is 1/4.

shift when both control and target modes are in|thestate. Throughout the remainder of this paper, the gates will be
The probability of success for the gate is approximatelycalled by the names just introduced. Note that the beam split-
1/20. ter conventions differ between the proposals. The KLM and

Knill gate. Our second gate shown in Fig. 4 was intro- PJF gates have beam splitters which have a sign change on
duced by Knill[4]. It directly implements the C-sign opera- reflection off the gray side but the Knill gate has a sign
tion. In contrast to the KLM gate it has no classical inter-change on transmission, for beams incident on the black side.
ferometric elements and requires only two ancilla, both
prepared in single-photon states. The gate succeeds when ti
output ancilla are both measured to be single-photon states
The probability for success of the Knill gate is 1/13.5.

PJF gate.Our third gate was introduced by Pittman, Ja-
cobs, and Fransdib] and is shown in Fig. 5. A related gate
is that introduced by Koastt al. [8]. Unlike the other two

Fidelity

FIG. 8. This plot shows the minimum fidelityz (axis) of the
0.85 0.9 0.95 1 modified KLM gate with detector efficiency of 0.9 and perfect an-
Detector Efficiency cilla input for a range of beam splitter ratios of the two NS gates
(x-y axes. The x-y axes show the change in the reflectivity from
FIG. 6. A comparison of the minimum fidelity of the three gates the normal reflectivities of the NS gate. The important feature of
(PJF, solid; Knill, dashed; KLM, dot-dasheds a function of the this plot is the increasing fidelity ag, is increased. The most
detector efficiencies. positive value ofp; shown here is the maximum value it can take.
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FIG. 9. The graphs in this figure show many cases in which the fidelity of the modified KLM gate can be improved. The top row shows
a simulation with detector efficiency considered only. The graph on the left shows the fidelity of the gate without any adjustments with the
solid line. The dashed line in this plot shows the fidelity reached when optimized agai(gt =1). The amount by whichy, is changed
is shown in the plot on the right. These data are plotted with the detector efficiency along the abscissa. The other two sets of graphs show
the same for source efficiency and finally detector and source efficiency both present but equal.

Figure 6 shows the results of the fidelity calculatidas  For detector efficiencies greater than about 93% the Knill
described in the preceding sectidor the three gates when gate gives marginally better performance, but for detector
only the detectors exhibit logge., perfect state inputThe  efficiencies below this value the KLM gate shows a better
parameter along the abscissa is the detector efficiency arfitlelity by a significant margin.
the ordinate shows the fidelity of the gate at that efficiency. A similar analysis can be done with ancilla production
The solid line represents the PJF gate, the dashed line showfficiencies. Figure 7 shows this analysis and has the same
the Knill gate, and the dot-dashed line shows the KLM gategate-plot style correspondence as in Fig. 6. Once again a

All gates show a quite steep decrease in minimum fidelitysteep decrease in minimum fidelity as a function of effi-
as a function of efficiency, illustrating the sensitivity of ciency is observed. In this figure it can be seen that the KLM
LOQC gates to this sort of losgecall though that this is gate has the highest minimum fidelity for the range of effi-
minimum fidelity and so represents a worst case scenariociencies shown. From the figures we may conclude that, as
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FIG. 10. These plots are of the same form as those in Fig. 9. They are a zoomed region of the detector and source losseqloconsidered

equa) near unity efficiency. This shows that settipg=1 can lead to an improvement until an efficiency of about 99.5% is reached. The
dots shown on the left plot are the optimized fidelities when bgtland », are varied.

assessed by minimum fidelity, the simplified KLM gate is in with %;. To the far right of then; axis is the limit of the
general the most forgiving in the presence of ancilla producallowed values for,. This limit is imposed by the necessity

tion and detection inefficiencies. that reflectivities lie between zero and one. So in this case,
the fidelity can be optimized by choosing the first beam split-
IV. GATE FIDELITY IMPROVEMENT ter perfectly reflective. Doing this, in effect, removes the

. . . . detector which measures zero photons and removes the
One effect of reduced ancilla efficiency is to bias the P

. . . ; vacuum input. Inefficient equipment is removed from the
probability of successful gate operation for different input te and th t molexity is reduced. All that Lo
states. This is a detrimental effect as some information abofa € and the gate compiexity IS reduced. A1 that remains s
the input state is thus leaked through the statistics of th o OP“”_"“ZG .the. f|de!|ty a!ong the »2 axis. This featur_e_of
projective measurements success. In turn this results in biadlcreasing fidelity withy, is seen here with detector efficien-
ing of the fidelities of the gate for different inputs. For ex- CI€S Up to about 99%. _
ample, with the KLM gate the fidelity for thé0)|0) input The increasing fidelity withp, is not seen with a Ios_sy
state is unaffected by ancilla inefficiencies while tBg|1) ~ Source. However, when the source efficiency drops slightly
and|1)|0) states are most strongly affected, with these stateBelow unity the relationship between the gate fidelity and
giving the minimum fidelity for this gate. This suggests it iS almost flat. For source efficiency of about 98%, the im-
may be possible to improve upon the fidelity gained here iforovement in the fidelity is only about 0.01 at the actual
one were to adjust the elements in the gate to compensate feptimized value of», and », compared with settingy,
the biasing of gate functionality incurred due to the ancilla=1. So for simplicity, the fidelity will be considered opti-
inefficiencies. Using this idea as a guide we have improvednized aty,=1 for both lossy sources and detectors.
the performance of the KLM gate. Figure 9 shows the gate fidelifpptimized with ;=1

The KLM gate is constructed from two NS gates, whichand, at the optimum value. The graphs on the left show the
ideally perform the operation given in E(). The gate has fidelity without any alterations to the beam splittesolid
two parameters which can be altered: the reflectivities ofine) and the optimized fidelitfdashed ling The plots on
each of the two beam splitters. Using the same technique dbe right show what they, value is for this optimized fidel-
above for calculating the gate fidelity, we can optimize theity. There are three cases shown in Fig. 9. The first is perfect
fidelity with respect to these beam splitter ratios for fixedsource efficiency and variable detector efficiency. The sec-
detector and input efficiency. It is assumed that the two N®nd is perfect detectors and variable source efficiency. In the
gates in the whole C-sign gate have the same beam splittéast case both the source and detectors are varied but both
ratios, maintaining the symmetry of the gate. have equal efficiencies.

Figure 8 shows the fidelity of the simplified KLM gate = As an example of the small difference between using
when the prepared ancilla are kept the same and the detectionl and varying it for nonunity source efficiency, the fidelity
scheme is the same as proposed, but the beam splitter ratiskown here for perfect detectors at 98% source efficiency is
in the two NS gates are varied. Tha%1”and “A 72" axes  0.956. When bothyp,; and 7, are varied a fidelity of 0.959
show the change in the beam splitter ratios from their initialcan be reached using,=0.7703 and»,=0.1838. When a
values; that is, for the point0,0) the beam splitter ratios source efficiency of 0.8 is used, the fidelity reported here is
have not changed. Theaxis shows the fidelity of the gate. 0.723 and a slight improvemefih the fourth decimal plage
The assumed loss with this diagram is 90% detector effican be achieved at the valugs=0.9720 andy,=0.1123.
ciency and perfect input efficiency. Figure 10 shows similar evidence thgf should be set to

The important feature of this plot is the increase of fidelityunity for all but the highest efficiencies. The figure is a
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Success Probability effects of ancilla inefficiency could also be applied to the
0.06 Knill and PJF gates in some form. However, it is not so clear
0,05 : how to proceeq for these'gates and it could be a computa-

) tionally expensive task. Since the KLM gate gave the most
0.04 / encouraging results in the default setup and its parameter
0.03 / space is relatively small, its optimization was pursued here.
0.02 - d
001 — — — — V. CONCLUSION

BE ) 535 5 Three LOQC C-sign gates have been compared using the

minimum fidelity over all possible input states as the figure
of merit. The KLM gate appears to be the most resilient to
FIG. 11. This plot shows the probability of success of the KLM Photon loss in ancilla detection for efficiencies below 95%
gate when at the optimized value fag, and settingn;=1. The  and input loss for all efficiencies. The gate fidelity for the
case considered here is when detector and source losses are predéhM gate can be improved by adjusting the beam splitter
and equal in magnitude. The solid line shows the probability ofratios of the gate. In all but the most efficient conditidloss
success of the gate with the beam splitter ratios set to the usu#ss than 0.5% it is best to remove the first beam splitter
values and with no losses. from each of the two NS gates that make up the C-sign gate
and adjust the second until optimum fidelity is reached. This
zoomed region of the plots from Fig. 9 where detector anchctually reduces the complexity of the gate considerably by
source efficiencies are equal and hlghel’ than 0.99. Note frorﬂamoving two photon counters. The improvement in mini-
these figures that there is an improvement in fldellty Wlthmum f|de||ty can be quite Significant' Sing|e_ph0ton produc-
7:=1 until efficiencies reach about 99.5%. Once again &jon and detection efficiencies around 90% are not unreason-
slight improvement in these figures can be gained by varyingple in the short term. Under such conditions the optimized
71 (which is possibly the origin of the slight downwards K|.M gate could be expected to give fidelities0.8 for all

bending of the improved fidelity curye operations, assuming all other imperfections can be ne-
Changing the parameters of the gate will change the probylected.

ability that the gate will function successfully, as shown in

Fig. 11 for the case where detector and source losses are

equal. The probability of the gate functioning does not drop

below aboutt the original value for detector and input effi- ~ We acknowledge useful discussions with G. J. Milburn

ciencies above about 0.8. and A. Gilchrist. This work was supported by the Australian
This technique of tuning gate parameters to counter th&esearch Council and ARDA.

Detector and source efficiency
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