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Violation of Bell’s inequality using classical measurements and nonlinear local operations
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We find that Bell’s inequality can be significantly violated (up to Tsirelson’s bound) with two-mode en-
tangled coherent states using only homodyne measurements. This requires Kerr nonlinear interactions for local
operations on the entangled coherent states. Our example is a demonstration of Bell-inequality violations using
classical measurements. We conclude that entangled coherent states with coherent amplitudes as small as 0.842

are sufficient to produce such violations.
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I. INTRODUCTION

Quantum entanglement is one of the most distinguishing
properties of quantum theory. It is well known that some
entangled states violate Bell’s famous inequality which is
imposed by any local-realistic theory [1]. The coherent states
with large amplitudes are known as most classical among all
pure states [2], and two well-separated coherent states in the
phase space can be considered classically (or macroscopi-
cally) distinguishable, i.e., they can be efficiently discrimi-
nated by homodyne detection in quantum optics without de-
tecting individual quanta. In this sense, an entangled
coherent state (ECS) can be regarded as an interesting ex-
ample of entanglement between classically distinguishable
states [3]. The ECSs in free-traveling fields have been stud-
ied as useful resources for quantum information processing
[4-13]. A single-mode superposition of coherent states
(SCS) can be simply converted to an ECS at a balanced
beam splitter. Recently, experimentally feasible schemes
have been suggested to generate the SCS and the ECSs in
free-traveling fields [14-16]. Recent experimental progress
shows that the generation of the ECSs is now within reach of
current technology [17].

It was found that violations of Bell’s inequality for the
ECSs can be demonstrated using photon detection, i.e., either
photon number measurements or photon presence measure-
ments [18,19]. However, photon detection cannot be consid-
ered a classical measurement as it detects individual photons.
In order to demonstrate Bell-inequality violations for the
ECS as entanglement between classically distinguishable
states, one needs to use measurements which have more clas-
sical nature such as homodyne detection. It is also worth
noting that homodyne detection can be performed with high
efficiency using current technology compared to photon de-
tection. There exist proposals for Bell-inequality tests with
some continuous variable states using homodyne detection,
but the required states tend to be quite exotic [20].

In this paper we find that Clauser, Horne, Shimony, and
Holt (CHSH)’s version [21] of the Bell inequality can be
violated up to Tsirelson’s bound 22 [22] with an ECS using
homodyne detection. Required local operations may be real-
ized using Kerr nonlinearities and simple linear optics ele-
ments. An interesting question answered by our investigation
is: how large must the amplitude of the ECS be in order to
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violate Bell’s inequality with respect to classical measure-
ments?

This paper is organized as follows. In Sec. II we study
violations of the Bell-CHSH inequality for ECSs using ho-
modyne detection and idealized local operations. This intro-
duces the scheme in a straightforward way and illustrates the
limits introduced specifically by the homodyne measure-
ment. We then explain in Sec. III how to implement the local
operations using Kerr nonlinearities, beam splitters, and
phase shifters, and derive limits to the Bell violation in the
presence of physically realizable local operations. We con-
clude with final remarks in Sec. IV.

II. BELL-INEQUALITY TEST FOR AN ECS USING
HOMODYNE DETECTION

We introduce four ECSs,
|@,) =N.(|@)a) = [~ &)|- a)), (1)

|¥.) =N.(|a)|- ) = |- a)|a)), (2)

where NJ_,=[2(1ie““”"z)]‘”2 and |a) is a coherent state with

amplitude @. We also define a local operation R(¢p) as

R(@)|a) = cos ¢|a) + sin ¢|- a),

R(g)|- @) =sin ¢|a) - cos ¢|- o), 3)
which is nonunitary due to the nonorthogonality of |@) and

|-a). However, R(¢p) becomes approximately unitary when
the overlap between the two coherent states, (a|—a)=e‘2‘“lz,
approaches zero. It should be noted that this overlap goes
rapidly to zero as « increases.

Let us now suppose that the initial entangled state shared
by Alice and Bob for a Bell-inequality test is |®,),5, where
A and B denote Alice and Bob’s modes, respectively. If Alice
and Bob perform the local operations, ﬁ(cﬁ) and R(6), on
their modes with angles ¢ and 6, respectively, the “rotated”
ECS becomes

| W) 45 = N{cos(d— 6)| D, )ap +sin(¢p— )W )5}, (4)
where the normalization factor is given by N=(2{1
+cos[2(¢p— 0)]e‘4“’|2})‘”2. The local operation R(@) changes
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FIG. 1. The amplitude quadrature correlations, @S)ng, for (a)
a=1 and (b) @=0.1 against N\, where A=2(¢—0).

the normalization factor of the initial state because of its
nonunitary property. This means the operation is intrinsically
nondeterministic. In this section we ignore this fact and
make the unphysical assumption that Alice and Bob can ap-

ply R() deterministically. However, notice that if the over-
lap between the two coherent states is negligible, the normal-
ization factor is not changed by the local operation regardless

of angles ¢ and 6. A physically realizable version of R()
will be introduced in Sec. III.

First let us examine the correlations between Alice and
Bob. The nonclassical correlations in continuous variable
states of light are described by the electric field amplitude
and phase quadratures. The amplitude and phase quadratures
can be defined respectively as

xV=a+af, x?P=i@a"-a), (5)

where @ and @' are the field annihilation and creation opera-
tors, and [)A((l),f(f)]=2i. Assuming real value of a, the

quadrature correlations for the state |[WX),, are given by the
formulas

cos[2(¢— 6)]

FURDY = 402 , ©)
AT 1 +cos[2(¢p— 0)]6_4“2
—4a?
JPRON e
XPXP) = - 4a? (7)

1 +cos[2(p— O)]e

The amplitude quadrature correlation (6) for a=1 and «
=0.1 is depicted in Fig. 1. For @=1 it is maximally corre-
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FIG. 2. The phase quadrature correlations, (}A(;z)f(g)), for (a) a
=1 and (b) @=0.1 against \.

lated for 2(¢p—60)=0, 7,27, and is equal to either —4 or 4.
The maximal value increases with «. For «=0.1 the correla-
tion is maximal for 2(¢— 6) =7 and is equal to —1. The phase
quadrature correlation (7) for a=1 and a=0.1 is shown in
Fig. 2. This correlation behaves similarly as the amplitude
quadrature correlation however, for a=1 its amplitude is
much smaller. This correlation is maximal for 2(¢—6)=1
and is equal to —0.0745. Fora=0.1, the correlation is maxi-
mal for 2(¢—60)=m as well and is equal to —1. The phase
quadrature correlation tends to zero if |a) and |-a) tend to
orthogonal (a— ).

The amplitude quadrature, in particular, shows high vis-
ibility fringes for @=1. However, in order to test a Bell in-
equality we need to discretize Alice and Bob’s results. After
applying the local operations, R(¢) and R(6), Alice and Bob
perform amplitude homodyne detection on modes A and B,
respectively. If the outcome of Alice’s (Bob’s) homodyne
measurement is larger than 0, value 1 is assigned to a (b). On
the other hand, if Alice’s (Bob’s) outcome is smaller than 0,
—1 is assigned to a (b). The Bell parameter S is then defined
as

S={aiby)+{aby) +{asb;) —{ab,), (8)

where the correlation coefficient (a;b;) corresponds to the
average value of Alice and Bob’s joint measurement and the
subscript j (k) denotes that angle ¢; (6;) is applied for the
corresponding local operation. According to any local-
realistic theory, the Bell parameter S should obey the Bell-
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CHSH inequality, |S|=2. The correlation coefficient (aby)
can be expressed as [23]

(ab) = f sen(uy oy Y P(ri o )d oty (9)

where n =m,,+in,; and np=mnp+ing are the quadrature
variables and P(7,,, 75,) is the marginal probability distri-
bution of the total Wigner function of the state |WX),,. The
total Wigner function can be calculated from the character-
istic function

PHYSICAL REVIEW A 75, 052105 (2007)

X(&a ) = T WRNPR| ,D(L,) ® DG} (10)

where 5({) is the displacement operator, DA(g“)=exp(§a”r
—"a) for bosonic operators d and a'. The Wigner function is
then calculated by taking the Fourier transform of the char-
acteristic function as

1
W4, 15) = e f d*LadLpx(Las L)

X exp[{yma — Lamy + Lpmp— Lsmpl. (11)

One can calculate the marginal probability distribution
P(54,» mp,) using Egs. (1), (2), (4), (10), and (11) as

- 2 _ )2 _ )2 _ 2_ 2 .
P(1ars m8,) = f W4, mp)dmaid g = 7_TN2{0052(¢1'— 0) (72 ar = @200, = @7 . =2y @2 g+ )y sin*(¢b; — 6,)

2 2
X (¢720mr = P20+ @y g=20mar 4 @205 @) 12 cos[2( by — G)Je 2 Tar 208 L Gin[2(p, - 6,)]

2 2
xe—2a2(6—2(7]Ar - a)2—2(7]Br—a2) _ e—Z(nlr + 01)2—2(713,—01

The correlation coefficient evaluated using Eq. (12) is

[Erfc(\2a) 2
el 4 sec[2(e; - 6]

(aby) = (13)

which is obviously « dependent. We have numerically found
maximum values of |S| using the method of steepest descent
[24] and plotted them in Fig. 3. For a>> 1, the figure shows
a Bell violation tending to the maximum allowed value of
242. This is also the regime in which it is valid to treat R(¢)
as a unitary. The absolute Bell parameter |S| exceeds the
local bound, 2, for «=0.723. Angles 6,=m/8, 6,=3m/8,
¢,=7/4, ¢$,=0 are the angles that approximately optimize
the violations for a=0.723; however, for =1, it is not

o
O0 1 2 3

FIG. 3. The numerically optimized Bell parameter |S| (solid
line) and the Bell parameter for 6,=7/8, 6,=37/8, ¢\=m/4, ¢,
=0 (dashed line). The Bell parameter S exceeds the local bound, 2,
for @=0.723 and reaches up to 2v2 as « increases.

D) 4 ¢ 22 + @ _ 2 ma) =2y = @) (12)

valid to treat I@((p) as a unitary. To study this region we need

to introduce a physical implementation of 1@((p). We do this
in the next section.

III. THE LOCAL OPERATIONS FOR THE BELL-
INEQUALITY TESTS

The local operation Ié(cp) required for the Bell inequality
tests studied in the previous section corresponds to a single-
qubit rotation for a coherent-state qubit A|a)+B|-a) [8].
The z rotation

N e 0
Uz(‘P)=< ; ) (14)

0 e7*
for a logical qubit |¢) can be obtained using the displace-
ment operator [8,9]. The action of the displacement operator
ﬁ(ie), where € (< a) is real, on the qubit |¢) is approxi-
mately the same as the z rotation of the qubit by 0Z(2ae)

when a>> 1. We can estimate their similarity by calculating
the fidelity

F=|(¢|U(2ae)D(ie)| $)*
=e“2{|A|2+ |B|2+e—2a2(AB*e—2me+A*Beziae)}z
~expl- €]~ 1, (15)

where a>>1 was assumed. The rotation angle ¢ depends on
a and € as ¢=2ae. A small amount of € suffices to make one
cycle of rotation when « is relatively large. The maximum
rotation angle is 7 because any angle larger than 7 can be
applied to the minus-sign direction. In order to make the
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FIG. 4. (Color online) (a) A schematic of an approximate qubit

rotation R(¢p) using Kerr nonlinearities (NL), displacement opera-
tions (D), and a phase shifter (P). (b) Another example, V’(go),

which is an approximation of the ideal qubit rotation R’ (o). See
text for details.

fidelity to be F>0.99 regardless of the rotation angle, the
amplitude should be a>15.7. It is well known that the dis-
placement operation ﬁ(ie) can be effectively performed us-
ing a beam splitter with the transmission coefficient 7' close
to unity and a high-intensity coherent field.

To achieve the operation R(¢) we need to operate

Ux(ar/ 4) and 0X(—W/4). The unitary operation Ux(w/ 4) can
be realized using a Kerr nonlinear interaction [8,25]. The
interaction Hamiltonian of a single-mode Kerr nonlinearity is
Hyr=hQ(a'a)?, where () is the strength of the Kerr nonlin-
earity. When the interaction time ¢ in the medium is 7/(},
coherent states |a) and |-a) evolve to

R e—i7T/4
Untla)=—=(a) +il- o)), (16)
. —i/4
Unil- @) = —=(i|lo) + |- @), (17)

where Uy, =exp[iHy.t/%]. This transformation corresponds
to U/(m/4) up to a global phase shift. The other rotation
U,(-m/4) can be realized by applying a m-phase shifter,
P(r), which acts |a) < |-a), after U (/4) operation. Since
the operation R(¢) is

R(¢) = U(m U (- m4) U () U (m14), (18)

it can be realized using Kerr nonlinearities and linear optics
elements as shown in Fig. 4(a).

It turns out that in order to observe the Bell violation it is
sufficient for Alice and Bob to implement the operation

Vi, a),
Vig,a) = UNLD( )UNL, (19)

which is depicted in Fig. 4(b). The operation V(go,a) is an

approximation of the ideal rotation R'(¢),

R'(¢)|a) = sin 2¢|a) + cos 2¢|- a),
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FIG. 5. The numerically optimized Bell parameter |S| for an
ECS with amplitude « using the real local operation (solid curve)
and the ideal local operation (dashed curve). See text for details.

R'(¢)|- a) = cos 2¢|a) — sin 2¢|- a), (20)

which results in the same Bell inequality violations as with
Ii’((p) in Eq. (3). Of course, when « is small, the “real” op-

eration V(go,a) is not a good approximation of Ii"(qp) be-
cause the displacement operator is not a good approximation

of 0Z(¢) in this limit. It is straightforward to calculate that

V(‘P’a)| >——[ ( a+§>+i - _£>>
+ ie""’”( a+i—>+l >
9 1 ip
V(¢’a)|—a>=z[w"”( a+;>+z >
+ €_i¢( —a+£>+z a—l—¢>>]
a a

21
If Alice and Bob perform the local operations, V(¢,a)

o —

QI%

QIE

and V(6, @), on their modes of |®,),, respectively, the ECS
is transformed to |¥"),5 as

N_ . . .
(W) 4= E[€I(¢_0)(— 1Bs¥o) + il Bg— ¥ — il— B> ¥e)

= |- Bg= v0) + e (= |y Bp) — il v~ Bo)
+il= Y4 Bo) = |= Vo= Bo))]. (22)

where By g=a+iQy o/ a, Vg4 9= a—i@y o/ a. The Bell param-
eter S in Eq. (8) can then be obtained using the Wigner
representation of Eq. (22), as described in the previous sec-
tion.

The explicit expressions of the Wigner function of state
|W"),5 and its Bell parameter S are inappropriate to present
here since they are too lengthy. In Fig. 5, we have plotted the
absolute Bell parameter |S| of the ECS maximized using the
method of steepest descent [24] (solid curve) and compare it
with the case using the “ideal” rotation (dashed curve). The
violations reach up to Cirel’son’s bound 242, as a grows.
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Remarkably, the Bell violations of the ECS using the “real”
operation ‘A/(gou,a) does not require very large values of a.

The Bell inequality is violated for &=0.842 using V(¢,, )
while it was @«=0.723 when the unphysical idealized local

operation R(¢) was applied. In the case of an ECS with a
=1 the maximum violation is §=2.29 at #,=~-0.066, 6,
~0.066, ¢ ~0.236, ¢ ~—0.236.

IV. CONCLUSION

In this paper we have studied the Bell-CHSH inequality
with ECSs, local nonlinear operations and homodyne mea-
surements. An ECS with a large amplitude is a state which
contains quantum correlations between macroscopically dis-
tinguishable states. Optical states are considered macroscopi-
cally distinguishable if they can be distinguished by homo-
dyne detection. We have shown that the Bell-CHSH
inequality can be violated with ECSs using homodyne mea-
surements up to Tsirelson’s bound 2v2. The bound is ap-
proached when a>> 1. Surprisingly, violation of local reality
with respect to homodyne measurements persists down to
a=0.842.

Given the importance of entanglement from both a funda-
mental perspective and that of applications such as quantum
computing, it would be of considerable interest to test these
ideas experimentally. In order to generate an ECS with «
=1, a single-mode SCS with amplitude a=+2~1.414 is re-
quired. For this ECS a maximum value of the Bell parameter
is =2.29 which is significantly larger than the classical limit.
Production of ECSs of this size are within reach of current
technology [14—17]. It is known that a SCS with a small
amplitude is very well approximated by a squeezed single
photon [14]. A SCS with amplitude 2 and fidelity =0.97
may be produced by squeezing a single photon with 4.8 dB
squeezing, which is experimentally feasible.
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The strength of the Kerr nonlinearity required for the lo-
cal operations remains challenging however, efforts are being
made to obtain nonlinear effects of sufficient strength using
electromagnetically induced transparency [16,26,27]. Tt
should be noted that ECSs with small amplitudes, which we
are interested in for experimental realization, are relatively
less sensitive to noise during the nonlinear interactions.

The experimental realization of Bell violations with large
amplitudes, a>>1, would be even more interesting since in
this limit, ECSs can be considered to be truly “macroscopic”
entanglement. As shown in Fig. 5, Bell inequality violations
close to the Cirel’son’s bound occur for a>>1. There are
some technical difficulties in approaching this regime experi-
mentally. First, it is known that the generation of an ECS of
an amplitude a>1 is experimentally more demanding.
However, some recent theoretical proposals are expected to
be experimentally implemented in foreseeable future to gen-
erate ECSs with large amplitudes. For example, one may use
the SCS amplification scheme [14], which uses beam split-
ters, ancillary coherent states, and photodetectors, to distill
large SCSs out of small ones. It was shown that a SCS of
a=2.5, which means an ECS of @~ 1.8, may be realized
using experimentally available resources with a high fidelity
[14]. Second, in the case of a large a, the local operations
will be harder to be performed. When amplitudes of ECSs
are larger, they suffer more rapid destruction of quantum
coherence in the nonlinear media used for the local opera-
tions. Methods to efficiently perform the local operations for
our Bell-inequality tests deserve further investigations.
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