4,776 research outputs found

    Spinal neurons that contain gastrin-releasing peptide seldom express Fos or phosphorylate extracellular signal-regulated kinases in response to intradermal chloroquine

    Get PDF
    Background: Gastrin-releasing peptide (GRP) is thought to play a role in the itch evoked by intradermal injection of chloroquine. Although some early studies suggested that GRP was expressed in pruriceptive primary afferents, it is now thought that GRP in the spinal cord is derived mainly from a population of excitatory interneurons in lamina II, and it has been suggested that these are involved in the itch pathway. To test this hypothesis, we used the transcription factor Fos and phosphorylation of extracellular signal-regulated kinases (ERK) to look for evidence that interneurons expressing GRP were activated following intradermal injection of chloroquine into the calf, in mice that express enhanced green fluorescent protein (EGFP) in these cells. Results: Injection of chloroquine resulted in numerous Fos- or phospho-ERK (pERK) positive cells in the somatotopically appropriate part of the superficial dorsal horn. The proportion of all neurons in this region that showed Fos or pERK was 18% and 21%, respectively. However, among the GRP–EGFP, only 7% were Fos-positive and 3% were pERK-positive. As such, GRP–EGFP cells were significantly less likely than other neurons to express Fos or to phosphorylate ERK. Conclusions: Both expression of Fos and phosphorylation of ERK can be used to identify dorsal horn neurons activated by chloroquine injection. However, these results do not support the hypothesis that interneurons expressing GRP are critical components in the itch pathway

    Substance P-expressing excitatory interneurons in the mouse superficial dorsal horn provide a propriospinal input to the lateral spinal nucleus

    Get PDF
    The superficial dorsal horn (laminae I and II) of the spinal cord contains numerous excitatory and inhibitory interneurons, and recent studies have shown that each of these groups can be divided into several neurochemically distinct populations. Although it has long been known that some neurons in this region have intersegmental (propriospinal) axonal projections, there have been conflicting reports concerning the number of propriospinal cells and the extent of their axons. In addition, little is known about the neurochemical phenotype of propriospinal neurons or about the termination pattern of their axons. In the present study we show, using retrograde tracing, that around a third of lamina I–II neurons in the lumbar enlargement project at least five segments cranially. Substance P-expressing excitatory neurons are over-represented among these cells, accounting for one-third of the propriospinal neurons. In contrast, inhibitory interneurons and excitatory PKCγ neurons are both under-represented among the retrogradely labelled cells. By combining viral vector-mediated Cre-dependent anterograde tracing with immunocytochemistry, we provide evidence that the lateral spinal nucleus (LSN), rather than the superficial dorsal horn, is the main target for axons belonging to propriospinal substance P-expressing neurons. These findings help to resolve the discrepancies between earlier studies and have implications for the role of the LSN in pain mechanisms

    Spatially Resolved Galaxy Star Formation and its Environmental Dependence I

    Full text link
    We use the photometric information contained in individual pixels of 44,964 (0.019<z<0.125 and -23.5<M_r<-20.5) galaxies in the Fourth Data Release (DR4) of the Sloan Digital Sky Survey to investigate the effects of environment on galaxy star formation (SF). We use the pixel-z technique, which combines stellar population synthesis models with photometric redshift template fitting on the scale of individual pixels in galaxy images. Spectral energy distributions are constructed, sampling a wide range of properties such as age, star formation rate (SFR), dust obscuration and metallicity. By summing the SFRs in the pixels, we demonstrate that the distribution of total galaxy SFR shifts to lower values as the local density of surrounding galaxies increases, as found in other studies. The effect is most prominent in the galaxies with the highest star formation, and we see the break in the SFR-density relation at a local galaxy density of ≈0.05\approx 0.05 (Mpc/h)−3^{-3}. Since our method allows us to spatially resolve the SF distribution within galaxies, we can calculate the mean SFR of each galaxy as a function of radius. We find that on average the mean SFR is dominated by SF in the central regions of galaxies, and that the trend for suppression of SFR in high density environments is driven by a reduction in this nuclear SF. We also find that the mean SFR in the outskirts is largely independent of environmental effects. This trend in the mean SFR is shared by galaxies which are highly star forming, while those which are weakly star forming show no statistically significant correlation between their environment and the mean SFR at any radius.Comment: 37 pages, 11 figures. Referee's comments included and matches version accepted for publication in the Astrophysical Journal. For high resolution figures, see http://www.phyast.pitt.edu/~welikala/pixelz/paper1

    Experiences and perceptions of Spring Lane Sure Start Children's Centre

    Get PDF
    Spring Lane Sure Start Children’s Centre was designated in September 2007, and ‘officially opened’ in February 2009. The Centre is housed in refurbished premises within a nursery/school complex in the heart of Northampton and offers diverse health, childcare, early education and support services delivered by a multi-professional team. These services and activities are available to children aged 0-5 years old, and their parents/carers, residing within a catchment area comprising eight ‘Super Output Areas’ in the Castle and St. James ward of Northampton. In April 2009, the Centre for Children and Youth (CCY) – a research centre based at The University of Northampton – was commissioned by Spring Lane Sure Start Children’s Centre to collate and gather evaluative data regarding experiences and perceptions of the Children’s Centre during its first year of activitie

    Assessing intra- and inter-regional climate effects on Douglas-fir biomass dynamics in Oregon and Washington, USA

    Get PDF
    While ecological succession shapes contemporary forest structure and dynamics, other factors like forest structure (dense vs. sparse canopies) and climate may alter structural trajectories. To assess potential sources of variation in structural trajectories, we examined proportional biomass change for a regionally dominant tree species, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), across vegetation zones representing broad gradients in precipitation and temperature with 3510 forest inventory plots in Oregon and Washington, USA. We found that P. menziesii biomass change decreased with P. menziesii biomass stocks and increased with P. menziesii density, remaining positive in older stands only in the wet and warm vegetation zone. Within two of the vegetation zones, biomass change was greatest in warm and wet environments. In dry vegetation zones, positive P. menziesii biomass change responses to initial canopy cover and canopy cover change (i.e., increases with cover loss and decreases with cover gain) indicated shifts in forest structure. Variation in P. menziesii biomass dynamics within and between vegetation zones imply multi-scale climatic controls on forest structural trajectories for P. menziesii and highlight the potential for continued atmospheric carbon sequestration in warm and wet forests of the Pacific Northwest for both young and old forests, given that future climatic conditions support similar forest dynamics

    Assessing intra- and inter-regional climate effects on Douglas-fir biomass dynamics in Oregon and Washington, USA

    Get PDF
    While ecological succession shapes contemporary forest structure and dynamics, other factors like forest structure (dense vs. sparse canopies) and climate may alter structural trajectories. To assess potential sources of variation in structural trajectories, we examined proportional biomass change for a regionally dominant tree species, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), across vegetation zones representing broad gradients in precipitation and temperature with 3510 forest inventory plots in Oregon and Washington, USA. We found that P. menziesii biomass change decreased with P. menziesii biomass stocks and increased with P. menziesii density, remaining positive in older stands only in the wet and warm vegetation zone. Within two of the vegetation zones, biomass change was greatest in warm and wet environments. In dry vegetation zones, positive P. menziesii biomass change responses to initial canopy cover and canopy cover change (i.e., increases with cover loss and decreases with cover gain) indicated shifts in forest structure. Variation in P. menziesii biomass dynamics within and between vegetation zones imply multi-scale climatic controls on forest structural trajectories for P. menziesii and highlight the potential for continued atmospheric carbon sequestration in warm and wet forests of the Pacific Northwest for both young and old forests, given that future climatic conditions support similar forest dynamics

    Climate change and Pacific Island food systems

    Get PDF
    Climate change in Pacific Island countries and territories (PICTs) is projected to have significant impacts, including rising sea-levels, more violent tropical cyclones and droughts. Fish stocks in the tropical regions of the Pacific are expected to be directly affected by any changes that may occur in the ocean’s ecosystem. The four alternative scenarios of the future of the Pacific food systems that are reported in this booklet provide important insights into the different dimensions of the food system, including fisheries and forests, trade, affordability and consumption, and public health. The scenarios offer essential information for policy-makers, in order for them to be able to test and take steps toward developing policies that enhance resilience and strengthen adaptation to climate change among fishers and farmers in the Pacific region

    Preprotachykinin A (PPTA) is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli

    Get PDF
    The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined three non-overlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B (NKB) and gastrin-releasing peptide (GRP). Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ~14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ~15% of the excitatory neurons in this region. They are different from the neurotensin, NKB or GRP neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli, and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1Cre), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in transmission of signals that are perceived as pain and itch
    • …
    corecore