3,400 research outputs found

    Techniques for High Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control

    Get PDF
    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments because of the diffraction and aberration leakage introduced by the additional stars, and as a result are not planned to be on direct imaging target lists. Multi-star wavefront control (MSWC) is a technique that uses a coronagraphic instrument's deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. Our previous paper introduced the Super-Nyquist Wavefront Control (SNWC) technique that uses a diffraction grating to enable the DM to generate high-contrast regions beyond the nominal controllable region. These two techniques can be combined to generate high-contrast regions for multi-star systems at any angular separations. As a case study, a high-contrast wavefront control (WC) simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged reaching 8 times 10(exp -9) mean contrast in 10 percent broadband light in one-sided dark holes from 1.6-5.5 lambda (wavelength) divided by D (distance)

    Large XCH 4 anomaly in summer 2013 over northeast Asia observed by GOSAT

    Get PDF
    Extremely high levels of column-averaged dry-air mole fractions of atmospheric methane (XCH4) were detected in August and September 2013 over northeast Asia (∼  20 ppb above the averaged summertime XCH4 over 2009–2012, after removing a long-term trend), as being retrieved from the Short-Wavelength InfraRed (SWIR) spectral data observed with the Thermal And Near-infrared Sensor for carbon Observation – Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT). Similar enhancements of XCH4 were also observed by the ground-based measurements at two Total Carbon Column Observing Network (TCCON) sites in Japan

    The harmonic measure of diffusion-limited aggregates including rare events

    Get PDF
    We obtain the harmonic measure of diffusion-limited aggregate (DLA) clusters using a biased random-walk sampling technique which allows us to measure probabilities of random walkers hitting sections of clusters with unprecedented accuracy; our results include probabilities as small as 10- 80. We find the multifractal D(q) spectrum including regions of small and negative q. Our algorithm allows us to obtain the harmonic measure for clusters more than an order of magnitude larger than those achieved using the method of iterative conformal maps, which is the previous best method. We find a phase transition in the singularity spectrum f(α) at α≈14 and also find a minimum q of D(q), qmin=0.9±0.05

    Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM

    Get PDF
    The need to perform long-term simulations with reasonable accuracy has led to the development of mass-conservative and efficient numerical methods for solving the transport equation in forward and inverse models. We designed and implemented a flux-form (Eulerian) tracer transport algorithm in the National Institute for Environmental Studies Transport Model (NIES TM), which is used for simulating diurnal and synoptic-scale variations of tropospheric long-lived constituents, as well as their seasonal and inter-annual variability. Implementation of the flux-form method requires the mass conservative wind fields. However, the model is off-line and is driven by datasets from a global atmospheric model or data assimilation system, in which vertically integrated mass changes are not in balance with the surface pressure tendency and mass conservation is not achieved. To rectify the mass-imbalance, a flux-correction method is employed. To avoid a singularity near the poles, caused by the small grid size arising from the meridional convergence problem, the proposed model uses a reduced latitude–longitude grid scheme, in which the grid size is doubled several times approaching the poles. This approach overcomes the Courant condition in the Polar Regions, maintains a reasonably high integration time-step, and ensures adequate model performance during simulations. To assess the model performance, we performed global transport simulations for SF<sub>6</sub>, <sup>222</sup>Rn, and CO<sub>2</sub>. The results were compared with observations available from the World Data Centre for Greenhouse Gases, GLOBALVIEW, and the Hateruma monitoring station, Japan. Overall, the results show that the proposed flux-form version of NIES TM can produce tropospheric tracer transport more realistically than previously possible. The reasons for this improvement are discussed

    The Higgs Sector and CoGeNT/DAMA-Like Dark Matter in Supersymmetric Models

    Full text link
    Recent data from CoGeNT and DAMA are roughly consistent with a very light dark matter particle with m\sim 4-10\gev and spin-independent cross section of order \sigma_{SI} \sim (1-3)\times 10^{-4}\pb. An important question is whether these observations are compatible with supersymmetric models obeying Ωh20.11\Omega h^2\sim 0.11 without violating existing collider constraints and precision measurements. In this talk, I review the fact the the Minimal Supersymmetric Model allows insufficient flexibility to achieve such compatibility, basically because of the highly constrained nature of the MSSM Higgs sector in relation to LEP limits on Higgs bosons. I then outline the manner in which the more flexible Higgs sectors of the Next-to-Minimal Supersymmetric Model and an Extended Next-to-Minimal Supersymmetric Model allow large σSI\sigma_{SI} and Ωh20.11\Omega h^2\sim 0.11 at low LSP mass without violating LEP, Tevatron, BaBar and other experimental limits. The relationship of the required Higgs sectors to the NMSSM "ideal-Higgs" scenarios is discussed.Comment: 11 pages, 3 figures. To appear in Proceedings of PASCOS 2010. The paper is a compilation of talks given at: PASCOS 2010, ORSAY Workshop on "Higgs Hunting", and SLAC Workshop on "Topologies for Early LHC Searches

    Payload characterization for CubeSat demonstration of MEMS deformable mirrors

    Get PDF
    Coronagraphic space telescopes require wavefront control systems for high-contrast imaging applications such as exoplanet direct imaging. High-actuator-count MEMS deformable mirrors (DM) are a key element of these wavefront control systems yet have not been flown in space long enough to characterize their on-orbit performance. The MEMS Deformable Mirror CubeSat Testbed is a conceptual nanosatellite demonstration of MEMS DM and wavefront sensing technology. The testbed platform is a 3U CubeSat bus. Of the 10 x 10 x 34.05 cm (3U) available volume, a 10 x 10 x 15 cm space is reserved for the optical payload. The main purpose of the payload is to characterize and calibrate the onorbit performance of a MEMS deformable mirror over an extended period of time (months). Its design incorporates both a Shack Hartmann wavefront sensor (internal laser illumination), and a focal plane sensor (used with an external aperture to image bright stars). We baseline a 32-actuator Boston Micromachines Mini deformable mirror for this mission, though the design is flexible and can be applied to mirrors from other vendors. We present the mission design and payload architecture and discuss experiment design, requirements, and performance simulations.United States. National Aeronautics and Space Administration (Space Technology Research Fellowship

    Cloud fragmentation and proplyd-like features in HII regions imaged by HST

    Full text link
    We have analyzed HST ACS and WFPC2 new and archival images of eight HII regions to look for new proto-planetary disks (proplyds) similar to those found in the Orion Nebula. We find a wealth of features similar in size (though many are larger) to the bright cusps around the Orion Nebula proplyds. None of them, however, contains a definitive central star. From this, we deduce that the new cusps may not be proplyds, but instead are fragments of molecular cloud material. Out of all the features found in the eight HII regions examined, only one, an apparent edge-on silhouette in M17, may have a central star. This feature might join the small number of bona fide proplyds found outside the Orion Nebula, in M8, M20 and possibly in M16. In line with the results found recently by Smith et al. (2005), the paucity of proplyds outside the Orion Nebula, may be explained by their transient nature as well as by the specific environmental conditions under whichthey can be observed.Comment: 51 pages; 19 figures; 5 tables. Accepted by A

    An Achromatic Focal Plane Mask for High-Performance Broadband Coronagraphy

    Get PDF
    Developments in coronagraph technology are close to achieving the technical requirements necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. We present a new focal plane mask which operates conceptually as an opaque disk occulter, but uses a phase mask technique to improve performance and solve the "size chromaticity" problem. This achromatic focal plane mask would maximize the potential planet detection space without allowing starlight leakage to degrade the system contrast. Compared with a conventional opaque disk focal plane mask, the achromatic mask allows coronagraph operation over a broader range of wavelengths and allows the detection of exoplanets closer to their host star. We present the generalized design for the achromatic focal plane mask, implementation within the Subaru Coronagraph Extreme Adaptive Optics instrument, and laboratory results which demonstrate the size-scaling property of the mask

    Simultaneous Exoplanet Characterization and deep wide-field imaging with a diffractive pupil telescope

    Full text link
    High-precision astrometry can identify exoplanets and measure their orbits and masses, while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-microarcsecond accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.Comment: 15 pages, 6 figures. This second paper, following the paper describing the diffractive pupil telescope (DPT) astrometric technique, shows how simultaneous astrometry and coronagraphy observations, enabled by the DPT concept, constrain the orbital parameters and mass of exoplanet
    corecore