55 research outputs found

    Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational Wave Event S190521g

    Get PDF
    We report the first plausible optical electromagnetic (EM) counterpart to a (candidate) binary black hole (BBH) merger. Detected by the Zwicky Transient Facility (ZTF), the EM flare is consistent with expectations for a kicked BBH merger in the accretion disk of an active galactic nucleus (AGN), and is unlikely (<O(0.01%<O(0.01\%)) due to intrinsic variability of this source. The lack of color evolution implies that it is not a supernovae and instead is strongly suggestive of a constant temperature shock. Other false-positive events, such as microlensing or a tidal disruption event, are ruled out or constrained to be <O(0.1%<O(0.1\%). If the flare is associated with S190521g, we find plausible values of: total mass MBBH100M M_{\rm BBH} \sim 100 M_{\odot}, kick velocity vk200kms1v_k \sim 200\, {\rm km}\, {\rm s}^{-1} at θ60\theta \sim 60^{\circ} in a disk with aspect ratio H/a0.01H/a \sim 0.01 (i.e., disk height HH at radius aa) and gas density ρ1010gcm3\rho \sim 10^{-10}\, {\rm g}\, {\rm cm}^{-3}. The merger could have occurred at a disk migration trap (a700rga \sim 700\, r_{g}; rgGMSMBH/c2r_g \equiv G M_{\rm SMBH} / c^2, where MSMBHM_{\rm SMBH} is the mass of the AGN supermassive black hole). The combination of parameters implies a significant spin for at least one of the black holes in S190521g. The timing of our spectroscopy prevents useful constraints on broad-line asymmetry due to an off-center flare. We predict a repeat flare in this source due to a re-encountering with the disk in 1.6yr(MSMBH/108M)(a/103rg)3/2\sim 1.6\, {\rm yr}\, (M_{\rm SMBH}/10^{8}M_{\odot})\, (a/10^{3}r_{g})^{3/2}.Comment: 9 pages, 4 figures, accepted for publication in Physical Review Letters (June 25, 2020

    The Zwicky Transient Facility: Observing System

    Get PDF
    The Zwicky Transient Facility (ZTF) Observing System (OS) is the data collector for the ZTF project to study astrophysical phenomena in the time domain. ZTF OS is based upon the 48 inch aperture Schmidt-type design Samuel Oschin Telescope at the Palomar Observatory in Southern California. It incorporates new telescope aspheric corrector optics, dome and telescope drives, a large-format exposure shutter, a flat-field illumination system, a robotic bandpass filter exchanger, and the key element: a new 47-square-degree, 600 megapixel cryogenic CCD mosaic science camera, along with supporting equipment. The OS collects and delivers digitized survey data to the ZTF Data System (DS). Here, we describe the ZTF OS design, optical implementation, delivered image quality, detector performance, and robotic survey efficiency

    The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs

    Get PDF
    The Zwicky Transient Facility (ZTF) is performing a three-day cadence survey of the visible northern sky (~3π) with newly found transient candidates announced via public alerts. The ZTF Bright Transient Survey (BTS) is a large spectroscopic campaign to complement the photometric survey. BTS endeavors to spectroscopically classify all extragalactic transients with m peak ≤ 18.5 mag in either the g ZTF or r ZTF filters, and publicly announce said classifications. BTS discoveries are predominantly supernovae (SNe), making this the largest flux-limited SN survey to date. Here we present a catalog of 761 SNe, classified during the first nine months of ZTF (2018 April 1–2018 December 31). We report BTS SN redshifts from SN template matching and spectroscopic host-galaxy redshifts when available. We analyze the redshift completeness of local galaxy catalogs, the redshift completeness fraction (RCF; the ratio of SN host galaxies with known spectroscopic redshift prior to SN discovery to the total number of SN hosts). Of the 512 host galaxies with SNe Ia, 227 had previously known spectroscopic redshifts, yielding an RCF estimate of 44% ± 4%. The RCF decreases with increasing distance and decreasing galaxy luminosity (for z < 0.05, or ~200 Mpc, RCF ≈ 0.6). Prospects for dramatically increasing the RCF are limited to new multifiber spectroscopic instruments or wide-field narrowband surveys. Existing galaxy redshift catalogs are only ~50% complete at r ≈ 16.9 mag. Pushing this limit several magnitudes deeper will pay huge dividends when searching for electromagnetic counterparts to gravitational wave events or sources of ultra-high-energy cosmic rays or neutrinos

    ZTF18aalrxas: A Type IIb Supernova from a Very Extended Low-mass Progenitor

    Get PDF
    We investigate ZTF18aalrxas, a double-peaked Type IIb core-collapse supernova (SN) discovered during science validation of the Zwicky Transient Facility. ZTF18aalrxas was discovered while the optical emission was still rising toward the initial cooling peak (0.7 mag over 2 days). Our observations consist of multi-band (ultraviolet and optical) light curves (LCs), and optical spectra spanning from ≈0.7 to ≈180 days past the explosion. We use a Monte-Carlo based non-local thermodynamic equilibrium model that simultaneously reproduces both the 56Ni-powered bolometric LC and our nebular spectrum. This model is used to constrain the synthesized radioactive nickel mass (0.17 M ☉) and the total ejecta mass (1.7 M ☉) of the SN. The cooling emission is modeled using semi-analytical extended envelope models to constrain the progenitor radius (790–1050 R ⊙) at the time of explosion. Our nebular spectrum shows signs of interaction with a dense circumstellar medium (CSM), and this spectrum is modeled and analyzed to constrain the amount of ejected oxygen (0.3–0.5 M ☉) and the total hydrogen mass (≈0.15 M ☉) in the envelope of the progenitor. The oxygen mass of ZTF18aalrxas is consistent with a low (12–13 M ☉) zero-age main-sequence mass progenitor. The LCs and spectra of ZTF18aalrxas are not consistent with massive single-star SN Type IIb progenitor models. The presence of an extended hydrogen envelope of low mass, the presence of a dense CSM, the derived ejecta mass, and the late-time oxygen emission can all be explained in a binary model scenario

    Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3

    Get PDF
    We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg², a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10⁻²⁵ yr⁻¹. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day⁻¹ (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than 10⁻⁴, or φ > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%

    The Zwicky Transient Facility: System Overview, Performance, and First Results

    Get PDF
    The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg 2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF’s public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope
    corecore