7 research outputs found

    SOME ASPECTS OF THE MECHANISMS OF SOLUBILIZATION AND INSOLUBILIZATION OF URANIUM FROM GRANITES BY HETEROTROPHIC MICROORGANISMS

    No full text
    In batch cultures, complex microflora from granitic mountain mass, promoted solubilization of U in presence of amino-acids as sole source of carbon and energy. Solubilized U amounted up to 100 mg U/1 in presence of microorganisms but was less than 35 mg U/1 in absence of microorganisms (sterile controls). Microflora involved contained different strains of bacteria, Pseudomonas fluorescens, P. putida, Achromobacter, Bacterium, Gaffkya or Peptococcus. In experimental design of factorial type with semi-continuous flow devices, the activity of different microflora from known forest soil was compared. Microflora specifically withstanding partial sterilization and comprising different Pseudomonas Bacillus licheniformis, B. cereus, B. lentus, B. polymyxa, B. megaterium, plus one or two unidentified yeasts promoted significantly microbial solubilization of U by synthesis of complexing agents with high complexing capacity for Al and Fe, but lower complexing capacity for U. But anaerobic microflora induced by waterlogging was much less active as compared by solubilization with control microflora. From the comparison of the different strains involved, Pseudomonas appeared to be the most active. In presence of an "organo-urany1" solution, obtained by adding glutamic or aspartic acids to uranium ore in sterile conditions, different bacteria originating from samples of granitic mountains mass could grow : Achromobacter, Brevibacterium, Acinetobacter, Gaffkya or Peptococcus, Pseudomonas, showing that such microorganisms could contribute to U deposition by metabolising organo-uranium compounds. Leaching and ecological implications of such processes are discussed

    Microbiota and Metabolite Modifications after Dietary Exclusion of Dairy Products and Reduced Consumption of Fermented Food in Young and Older Men.

    No full text
    The gut microbiota adapts to age-related changes in host physiology but is also affected by environmental stimuli, like diet. As a source of both pre- and probiotics, dairy and fermented foods modulate the gut microbiota composition, which makes them interesting food groups to use for the investigation of interactions between diet and ageing. Here we present the effects of excluding dairy products and limiting fermented food consumption for 19 days on gut microbiota composition and circulating metabolites of 28 healthy, young (YA) and older (OA) adult men. The intervention affected gut microbial composition in both groups, with significant increases in Akkermansia muciniphila and decreases in bacteria of the Clostridiales order. Lower fasting levels of glucose and insulin, as well as dairy-associated metabolites like lactose and pentadecanoic acid, were observed after the intervention, with no effect of age. The intervention also decreased HDL and LDL cholesterol levels. Dairy fat intake was positively associated with the HDL cholesterol changes but not with the LDL/HDL ratio. In conclusion, restricting the intake of dairy and fermented foods in men modified their gut microbiota and blood metabolites, while the impact of the dietary restrictions on these outcomes was more marked than the effect of age

    Reprint of: A parallel randomized trial on the effect of a healthful diet on inflammageing and its consequences in European elderly people: Design of the NU-AGE dietary intervention study

    No full text
    The proportion of European elderly is expected to increase to 30% in 2060. Combining dietary components may modulate many processes involved in ageing. So, it is likely that a healthful diet approach might have greater favourable impact on age-related decline than individual dietary components. This paper describes the design of a healthful diet intervention on inflammageing and its consequences in the elderly

    A parallel randomized trial on the effect of a healthful diet on inflammageing and its consequences in European elderly people:design of the NU-AGE dietary intervention study

    No full text
    The proportion of European elderly is expected to increase to 30% in 2060. Combining dietary components may modulate many processes involved in ageing. So, it is likely that a healthful diet approach might have greater favourable impact on age-related decline than individual dietary components. This paper describes the design of a healthful diet intervention on inflammageing and its consequences in the elderly
    corecore