266 research outputs found
The structure of algebraic covariant derivative curvature tensors
We use the Nash embedding theorem to construct generators for the space of
algebraic covariant derivative curvature tensors
Colorimetric Stimuli-Responsive Hydrogel Polymers for the Detection of Nerve Agent Surrogates
The threat of chemical warfare agents (CWAs) necessitates the development of functional materials that not only quickly detect the presence of CWAs but also actively protect against their toxicity. We have synthesized responsive units that exhibit colorimetric responses upon exposure to CWAs and incorporated them into a versatile detection platform based on copolymers prepared by ring-opening metathesis polymerization (ROMP). The theoretical detection limits for CWA simulants in solution for these polymers are as low as 1 ppm. By incorporating hydrogel-promoting units as pendant chains, we are able to obtain polymers that instantly respond to CWA vapors and are easy to regenerate to the deactivated state by simple treatment with ammonium hydroxide vapor. We further demonstrate a collapse of the polymer gels in response to trifluoroacetic acid (TFA), a strong acid that produces a more fully ionized state as a result of its more caustic nature.United States. Defense Threat Reduction Agency. Chemical and Biological Technologies Department (Grant BA12PHM123
A matched expansion approach to practical self-force calculations
We discuss a practical method to compute the self-force on a particle moving
through a curved spacetime. This method involves two expansions to calculate
the self-force, one arising from the particle's immediate past and the other
from the more distant past. The expansion in the immediate past is a covariant
Taylor series and can be carried out for all geometries. The more distant
expansion is a mode sum, and may be carried out in those cases where the wave
equation for the field mediating the self-force admits a mode expansion of the
solution. In particular, this method can be used to calculate the gravitational
self-force for a particle of mass mu orbiting a black hole of mass M to order
mu^2, provided mu/M << 1. We discuss how to use these two expansions to
construct a full self-force, and in particular investigate criteria for
matching the two expansions. As with all methods of computing self-forces for
particles moving in black hole spacetimes, one encounters considerable
technical difficulty in applying this method; nevertheless, it appears that the
convergence of each series is good enough that a practical implementation may
be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue
of Classical and Quantum Gravit
Impaired Neural Synchrony in the Theta Frequency Range in Adolescents at Familial Risk for Schizophrenia
Puberty is a critical period for the maturation of the fronto-limbic and fronto-striate brain circuits responsible for executive function and affective processing. Puberty also coincides with the emergence of the prodromal signs of schizophrenia, which may indicate an association between these two processes. Time-domain analysis and wavelet based timeâfrequency analysis was performed on electroencephalographic (EEG) data of 30 healthy control (HC) subjects and 24 individuals at familial risk (FR) for schizophrenia. All participants were between the ages of 13 and 18âyears and were carefully matched for age, gender, ethnicity, education, and Tanner Stage. Electrophysiological recordings were obtained from 32 EEG channels while participants performed a visual oddball task, where they identified rare visual targets among standard âscrambledâ images and rare aversive and neutral distracter pictures. The time-domain analysis showed that during target processing the FR group showed smaller event-related potentials in the P2 and P3 range as compared to the HC group. In addition, EEG activity in the theta (4â8âHz) frequency range was significantly reduced during target processing in the FR group. Inefficient cortical information processing during puberty may be an early indicator of altered brain function in adolescents at FR for schizophrenia and may represent a vulnerability marker for illness onset. Longitudinal assessments will have to determine their predictive value for illness onset in populations at FR for psychotic illness
OpenVirtualObjects (OVO): An open set of standardized and validated 3D household objects for virtual reality-based research, assessment, and therapy
Virtual reality (VR) technology provides clinicians, therapists, and researchers with new opportunities to observe, assess, and train behaviour in realistic yet well-controlled environments. However, VR also comes with a number of challenges. For example, compared to more abstract experiments and tests on 2D computer screens, VR-based tasks are more complex to create, which can make it more expensive and time-consuming. One way to overcome these challenges is to create, standardize, and validate VR content and to make it openly available for researchers and clinicians. Here we introduce the OpenVirtualObjects (OVO), a set of 124 realistic 3D household objects that people encounter and use in their everyday lives. The objects were rated by 34 younger and 25 older adults for recognizability, familiarity, details (i.e., visual complexity), contact, and usage (i.e., frequency of usage in daily life). All participants also named and categorized the objects. We provide the data and the experiment- and analysis code online. With OVO, we hope to facilitate VR-based research and clinical applications. Easy and free availability of standardized and validated 3D objects can support systematic VR-based studies and the development of VR-based diagnostics and therapeutic tools
OpenVirtualObjects: An open set of standardized and validated 3D household objects for virtual reality-based research, assessment, and therapy
Virtual reality (VR) technology provides clinicians, therapists, and researchers with new opportunities to observe, assess, and train behavior in realistic yet well-controlled environments. However, VR also comes with a number of challenges. For example, compared to more abstract experiments and tests on 2D computer screens, VR-based tasks are more complex to create, which can make it more expensive and time-consuming. One way to overcome these challenges is to create, standardize, and validate VR content and to make it openly available for researchers and clinicians. Here we introduce the OpenVirtualObjects (OVO), a set of 124 realistic 3D household objects that people encounter and use in their everyday lives. The objects were rated by 34 younger and 25 older adults for recognizability, familiarity, details (i.e., visual complexity), contact, and usage (i.e., frequency of usage in daily life). All participants also named and categorized the objects. We provide the data and the experiment- and analysis code online. With OVO, we hope to facilitate VR-based research and clinical applications. Easy and free availability of standardized and validated 3D objects can support systematic VR-based studies and the development of VR-based diagnostics and therapeutic tools
Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil
Extensive interfluvial wetlands occur in the upper Negro River basin (Brazil) and contain a mosaic of vegetation dominated by emergent grasses and sedges with patches of shrubs and palms. To characterize the release of carbon dioxide and methane from these habitats, diffusive and ebullitive emissions and transport through plant aerenchyma were measured monthly during 2005 in permanently and seasonally flooded areas. CO2 emissions averaged 2193 mg C m-2 day-1. Methane was consumed in unflooded environments and emitted in flooded environments with average values of -4.8 and 60 mg C m-2 day-1, respectively. Bubbles were emitted primarily during falling water periods when hydrostatic pressure at the sediment-water interface declined. CO2 and CH4 emissions increased when dissolved O2 decreased and vegetation was more abundant. Total area and seasonally varying flooded areas for two wetlands, located north and south of the Negro River, were determined through analysis of synthetic aperture radar and optical remotely sensed data. The combined areas of these two wetlands (3000 km2) emitted 1147 Gg C year-1 as CO2 and 31 Gg C year-1 as CH4. If these rates are extrapolated to the area occupied by hydromorphic soils in the upper Negro basin, 63 Tg C year-1 of CO2 and 1.7 Tg C year-1 as CH4 are estimated as the regional evasion to the atmosphere. © 2010 The Author(s)
- âŠ