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Colorimetric Stimuli-Responsive Hydrogel 

Polymers for the Detection of Nerve Agents 

Christian Belger, Jonathan G. Weis, Eilaf Ahmed and Timothy M. Swager* 

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States 

CWA detection, Stimuli-responsive hydrogels, ROMP  

ABSTRACT 

The threat of chemical warfare agents (CWAs) necessitates the development of functional 

materials that not only quickly detect the presence of CWAs but also actively protect against 

their toxicity. We have synthesized responsive units that exhibit colorimetric responses upon 

exposure to CWAs and incorporated them into a versatile detection platform based on 

copolymers prepared by ring-opening metathesis polymerization (ROMP). The theoretical 

detection limits for CWA simulants in solution for these polymers are as low as 1 ppm. By 

incorporating hydrogel-promoting units as pendant chains, we are able to obtain polymers that 

instantly respond to CWA vapors and are easy to regenerate to the deactivated state by simple 

treatment with ammonium hydroxide vapor. We further demonstrate a collapse of the polymer 

gels in response to trifluoroacetic acid (TFA), a strong acid that produces a more fully ionized 

state as a result of its more caustic nature. 
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Introduction 

Chemical warfare agents (CWA) have been a threat for more than a century and continue to 

pose significant dangers in the homeland as well as on the battle field. Organophosphorus nerve 

agents are a subclass of CWAs; their relatively easy synthesis and high toxicity renders them an 

enduring threat. The mode of action for these nerve agents is the inhibition of the enzyme 

acetylcholinesterase, which results in continuous overstimulation of muscles that can ultimately 

result in death.
 
Figure 1 details selected nerve agents and their simulants with similarly 

electrophilic phosphorus (V) cores. Sarin (1), for example, is volatile and extremely toxic (LD50 

= 70 µg/kg) whereas cyclosarin (3) is more persistent with an even higher toxicity (LD50 = 17 

µg/kg). As a result of the regulation of CWAs and their extreme toxicity, the use of simulants 

such as diethyl chlorophosphate (DCP, 4, LD50 = 11 mg/kg) and diisopropyl fluorophosphate 

(DFP, 5, LD50 = 2 mg/kg) is common in laboratory experiments. 

 

Figure 1. Nerve agents and their mimics often used as less toxic substitutes 

The need for proper protection against these threats has led to the development of a variety of 

detection schemes for CWAs over the past few decades,
1,2

 including chromatographic,
3-6

 

spectroscopic,
7-10

 electrochemical,
11-15

 fluorogenic,
16-25

 and colorimetric
26-29

 approaches. Fewer 

reports can be found for polymer-based detection schemes.
30-32

  

It is inadequate to only have sensitive and selective detection methods; protective apparel is 

essential, as nerve agents are easily absorbed through the skin.
33

 Modern full body protective 
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 3

suits can block external chemical threats, at the cost of breathability of the fabric, hence limiting 

their wearability.
33

 The duration of wearability could be significantly extended if dynamic 

responsive materials are incorporated into the fabric, enabling breathability in the absence of 

threat and creating a protective barrier upon exposure to CWAs. The incorporation of responsive 

units into polymers results in more robust materials, and the activation by a CWA can be used to 

trigger a mechanical change in the material. In order to develop the next generation of protective 

fabrics, we were interested in polymers that exhibit (1) a strong colorimetric response to CWAs 

for detection and (2) a mechanical response upon contact with CWAs for protection.  

Synthesis 

Herein, we describe polymers that possess a simple colorimetric probe based on 

triarylmethanol-containing derivatives that are able to detect nerve-agent mimics. Colorimetric 

sensing experiments with trifluoroacetic acid (TFA) and DCP (4) demonstrate that the CWA-

responsive units described here exhibit a significant bathochromic shift and undergo a color 

change from colorless to red or green, depending on the substituent groups on the 

triarylmethanol-based chromogenic moiety. Furthermore, by incorporating the responsive units 

into hydrogel-containing polymers, a volumetric response to TFA could also be demonstrated. 

We chose polymers produced by ring opening metathesis polymerization (ROMP) as the basis 

for our responsive material in order to allow for simple tuning of the polymers’ properties. The 

colorimetric probes are inspired by the work of Costero and coworkers
26,27

 and more recently, 

analogues have been utilized in polymers developed by our group.
32

 The triarylmethanol groups 

are readily incorporated into monomers 9, 10 and 11, as outlined in Scheme 1. We chose highly 

arylated tertiary alcohols as responsive units for the detection of CWA as a result of their 
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 4

excellent reactivity with nerve agent simulants by phosphorylation of the hydroxyl moiety and 

subsequent ionization resulting in a rapid colorimetric response.  

Scheme 1. Synthetic route to monomers 9–11. 

 

The reaction of the diarylketones with organolithium derivatives of 8 provided the desired 

building blocks (9, 10 and 11) in moderate to high yields (32–86%). As shown in Scheme 2, 

ROMP of monomers 10 and 11 gave the corresponding polymers (HP-1 and HP-2) using 

Grubbs’ third generation catalyst (G3). Gel permeation chromatography (GPC) measurements in 

tetrahydrofuran, relative to polystyrene standards, showed moderate number-average molecular 

weights (Mn) that range from 23 kDa in HP-1 with a dispersity (Đ) of 1.58 to 52 kDa in HP-2 

with a Đ of 1.20. We were unsuccessful in producing a homopolymer of building block 9 under 

the reaction conditions shown in Scheme 2.  
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 5

Scheme 2. Synthesis of homopolymers HP-1 and HP-2. 

 

 

Figure 2 illustrates the colorimetric response of monomers 10 and 11 upon addition of 100 

equivalents DCP (4) at room temperature and ambient conditions. The colorless solution of 

compound 10 in dichloromethane (DCM) displays an absorption band around 265 nm (Figure 

2a). Addition of DCP (4) to a solution of 50 µg 10 in 3 mL DCM gives rise to two absorption 

bands at 450 nm and 620 nm, resulting in a significant bathochromic shift in the absorption 

spectrum (∆λ = 350 nm). The change in color from colorless to green was observed immediately 

upon addition of DCP. This bathochromic shift is consistent with previous reports where a 

phosphorylation-reaction between the electron-deficient phosphorus in DCP (4) and the 

nucleophilic hydroxyl moiety in compound 10/11 results in ionization to the highly colored 

carbocation.
26,27

 Compound 11 has fewer electron-donating groups than compound 10, and 

reaction with DCP (4) results in a colorless to red bathochromic shift from 300 nm to 490 nm 

(∆λ = 190 nm) (Figure 2b). The reduced bathochromic shift can be attributed to the more limited 

electron delocalization in the carbocation from 11 as compared to that generated from 10. 
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Figure 2. UV/Vis spectra and photographs of compounds 10 (a) and 11 (b) in DCM before and 

after addition of 100 eq. DCP. UV/Vis spectra and photographs of polymers HP-1 (c) and HP-2 

(d) in DCM before and after addition of 100 eq. DCP.  

We further tested the reactivity of homopolymers HP-1 and HP-2 with DCP (4). Both 

polymers showed responses very similar to their respective monomers with dramatic and 

simultaneous colorimetric changes indicating the formation of the highly colored carbocation. 

The regeneration of monomers 10 and 11 and polymers HP-1 and HP-2 is achieved by the 

addition of a basic aqueous solution such as 2M sodium hydroxide or tetrabutylammonium 

hydroxide to the colored solutions.  

To obtain polymers with improved solubility and hydrogel character we have targeted random 

double and triple copolymers. An overview of the polymers synthesized can be found in Table 1. 

The copolymer prepared with monomer 9, which could previously not be synthesized as 

homopolymer, exhibited similar reactivity in solution compared to the copolymers prepared with 

monomers 10 and 11. Random, copolymers containing two of three comonomers were obtained.  
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 7

Table 1. Synthesis of homopolymer HP-1/HP-2, random copolymers containing two, RDP-

1/RDP-2/RDP-3, or three, RTP-1/RTP-2/RTP-3, comonomers were produced. 

 

In addition to the CW responsive and hydrogel promoting monomers initially investigated, we 

found that the addition of comonomer 12, possessing a long alkyl chain increased the solubility 

and film forming properties of the resulting polymers. In order to establish theoretical detection 

limits, we measured the change in absorption of RDP-1, RDP-2 and RDP-3 in DCM for the 

addition of different amounts of DCP (4) (see supporting information). The detection limits 

obtained are 1 ppm for RDP-1 after 120 seconds of exposure time, as well as 5 ppm for RDP-2 

and 8 ppm for RDP-3 after only 30 seconds of exposure time.
31

 In the following section, we 

discuss only the data obtained for RDP-2 and RTP-2 because the change in color of these 

polymers is the most substantial. Furthermore RDP-2 and RDP-3 show a faster response time 

toward CWA mimics. The data obtained for the other polymers (RDP-1 and RDP-3, RTP-1 and 

RTP-3) can be found in the supporting information. 

We were able to obtain RDP-2 with molecular weights of 49k and a narrow Đ of 1.17 by 

random copolymerization of monomers 10 and 12. RDP-2 is very soluble, but behaves poorly 
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 8

when dropcast or spincoated, resulting in brittle and non-transparent films. The polymer was 

therefore deposited on cotton (Figure 3), and in this construct the polymer can easily be 

regenerated with near instantaneous color loss upon exposure to ammonium hydroxide vapor.  

N

C16H33

OO

90

N

10

N

x

RDP-2

N

C16H33

OO

90

OH

N

10

N

x

DCP/TFA

NH4OH

 

 

Figure 3. Polymer RDP-2 coated on a cotton tip (a) responds rapidly to DCP (b) and TFA (d) 

vapors and can be regenerated upon exposure to vapor from an aqueous NH4OH solution (c). 

In pursuit of the goal of designing highly breathable membranes, we envisioned triple 

copolymers that also incorporate hydrogel units (comonomer 13) to promote swelling and 

collapsing. We therefore prepared random triple copolymers (RTP, Table 1) using the previously 

established ROMP conditions (see supporting information). RTP-2 can be used to create thin 

films that show the same response toward DCP as polymers HP-1 and RDP-2. 
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Figure 4. Molecular structure of RTP-2. Spin coated film from chloroform solution before 

exposure (a, grey curve in absorption spectra) and after exposure to DCP (b, light green curve in 

absorption spectra) at room temperature. Regeneration is complete upon exposure to ammonium 

hydroxide vapor (c).  After exposure to TFA vapor (d, dark green curve in absorption spectra). 

As detailed in Figure 4, RTP-2 can be easily regenerated from the active state by exposing it to 

ammonium hydroxide vapor. This cycle has been repeated several times without a visual loss of 

activity. Several attempts to determine the film thickness before and after exposure to TFA and 

DCP were unsuccessful because the dropcasted material is very soft (compliant) before the 

exposure to the analyte, thus preventing analysis by profilometry. However upon exposure a 

hardening of the polymer film is observed. The mechanical and volumetric changes are best 

demonstrated by observation of a bulk hydrogel that has been exposed to TFA vapor (Figure 5).  
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Figure 5. Molecular structure of triblock Gel-1 and its response to TFA (b). Swollen state of 

hydrogel after treatment with 2M NaOH or (Bu)4NOH (a). 

In its swollen, unreacted state Gel-1 has a diameter of more than 1 cm and is relatively soft. 

Upon exposure to TFA vapor Gel-1 shows the characteristic color change to dark green. When 

collapsed, Gel-1 has a diameter is 0.5 cm. It should be noted that the volumetric response was 

only achieved using TFA vapor. In the presence of DCP, the swollen hydrogel only showed its 

characteristic color change. We attribute this to the lower vapor pressure of DCP compared to 

TFA. This incomplete ionization prevents the substantial gel collapse that is observed upon 

exposure to TFA. Future work is aimed at improving the response toward CWA mimics and 

demonstrating the collapse in polymer thin films. 

 

Conclusions 

In summary we synthesized two highly sensitive probes for the detection of CWA mimics and 

successfully incorporated them into random double and triple copolymers. Low ppm theoretical 
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 11

detection limits toward DCP were demonstrated in all cases. Furthermore, we show the tunability 

of the obtained polymers by incorporating alkyl-containing and hydrogel-promoting building 

blocks. These polymers show fully reversible responses toward DCP and can be regenerated with 

ammonium hydroxide vapor. A bulk hydrogel collapse upon exposure to TFA could be 

demonstrated, suggesting the use of these materials in dynamic, CWA-responsive films for 

application in protective fabrics. 
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