38 research outputs found

    Trafficking of Siderophore Transporters in Saccharomyces cerevisiae and Intracellular Fate of Ferrioxamine B Conjugates

    Get PDF
    We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process

    From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases

    Get PDF
    Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Ubiquitin ligase Nedd4 promotes α-synuclein degradation by the endosomal–lysosomal pathway

    No full text
    α-Synuclein is an abundant brain protein that binds to lipid membranes and is involved in the recycling of presynaptic vesicles. In Parkinson disease, α-synuclein accumulates in intraneuronal inclusions often containing ubiquitin chains. Here we show that the ubiquitin ligase Nedd4, which functions in the endosomal–lysosomal pathway, robustly ubiquitinates α-synuclein, unlike ligases previously implicated in its degradation. Purified Nedd4 recognizes the carboxyl terminus of α-synuclein (residues 120–133) and attaches K63-linked ubiquitin chains. In human cells, Nedd4 overexpression enhances α-synuclein ubiquitination and clearance by a lysosomal process requiring components of the endosomal-sorting complex required for transport. Conversely, Nedd4 down-regulation increases α-synuclein content. In yeast, disruption of the Nedd4 ortholog Rsp5p decreases α-synuclein degradation and enhances inclusion formation and α-synuclein toxicity. In human brains, Nedd4 is present in pigmented neurons and is expressed especially strongly in neurons containing Lewy bodies. Thus, ubiquitination by Nedd4 targets α-synuclein to the endosomal–lysosomal pathway and, by reducing α-synuclein content, may help protect against the pathogenesis of Parkinson disease and other α-synucleinopathies

    Yeast ubiquitin ligase Rsp5 contains nuclear localization and export signals

    Get PDF
    The Rsp5 ubiquitin ligase regulates numerous cellular processes. Rsp5 is mainly localized to the cytoplasm but nuclear localization was also reported. A potential nuclear export signal was tested for activity by using a GFP2 reporter. The 687-LIGGIAEIDI-696 sequence located in the Hect domain was identified as a nuclear export signal active in a Crm1-dependent manner, and its importance for the localization of Rsp5 was documented by using fluorescence microscopy and a lacZ-based reporter system. Analysis of the cellular location of other Rsp5 fragments fused with GFP2 indicated two independent potential nuclear localization signals, both located in the Hect domain. We also uncovered Rsp5 fragments that are important to targeting/tethering Rsp5 to various regions in the cytoplasm. The presented data indicate that Rsp5 ligase is a shuttling protein whose distribution within the cytoplasm and partitioning between cytoplasmic and nuclear locations is determined by a balance between the actions of several targeting sequences and domains
    corecore