20 research outputs found

    An Approach for Verifying Concurrent C Programs

    Get PDF
    International audienceAs software system and its complexity are fast growing, software correctness becomes more and more a crucial issue. We address the problem of verifying functional properties of real-time operating system (microkernel) implemented with C. We present a work-in-progress approach for formally specifying and verifying concurrent C programs directly based on the semantics of C. The basis of this approach is to automatically translate a C code into a TLA+ specification which can be checked by the TLC model checker. We define a set of translation rules and implement it in a tool (C2TLA+) that automatically translates C code into a TLA+ specification. Generated specifications can be integrated with manually written specifications that provide primitives that cannot be expressed in C, or that provide abstract versions of the generated specifications to address the state-explosion problem

    C2TLA+ : Traduction automatique du code C vers TLA+

    Get PDF
    National audienceNous nous intéressons dans ce papier à l'automatisation de la traduction d'un code source C vers un modèle écrit dans le langage de spécification TLA+. Nous proposons alors un outil C2TLA+ pour automatiser le passage d'un code source C vers un modèle écrit dans un langage combinant une logique temporelle avec une logique des actions afin qu'il soit vérifié par le model-checker TLC. Ce papier illustre les règles de représentation et de traduction utilisées pour passer d'une implémentation à une spécification TLA+

    Preface to the VECoS 2020 & 2021 special issue of ISSE

    No full text
    International audienceThis special issue contains extended versions of selected papers from the 14th and 15th editions of the International Conference on Verification and Evaluation of Computer andCommunication Systems (VECoS 2020/21)

    Verifying and Constructing Abstract TLA Specifications: Application to the Verification of C programs

    No full text
    International audienceOne approach to verify the correctness of a system is to prove that it implements an executable (specification) model whose correctness is more obvious. Here, we define a kind of automata whose state is the product of values of multiple variables that we name State Transition System (STS). We define the semantics of TLA+ (specification language of the Temporal Logic of Actions) constructs using STSs, in particular the notions of TLA+ models, data hiding, and implication between models. We implement these concepts and prove their usefulness by applying them to the verification of C programs against abstract (TLA+ or STS) models and properties

    Casein-Conjugated Gold Nanoparticles for Amperometric Detection of Leishmania infantum

    No full text
    Sensitive and reliable approaches targeting the detection of Leishmania are critical for effective early diagnosis and treatment of leishmaniasis. In this frame, this paper describes a rapid quantification assay to detect Leishmania parasites based on the combination of the electrocatalytic ability of gold nanoparticles (AuNPs) to act as a catalyst for the hydrogen formation reaction along with the specificity of the interaction between casein and the major surface protease of the Leishmania parasite, GP63. First, pure and casein-modified AuNPs were prepared and characterized by scanning electron microscopy and ultraviolet-visible spectroscopy. Then, casein-conjugated AuNPs were incubated with Leishsmania parasites in solution; the formed complex was collected by centrifugation, treated by acidic solution, and the pelleted AuNPs were placed on screen-printed carbon electrodes (SPCEs) and chronoamperometric measurements were carried out. Our results suggest that it is possible to detect Leishmania parasites, with a limit less than 1 parasite/mL. A linear response over a wide concentration interval, ranging from 2 x 10(-2) to 2 x 10(5) parasites/mL, was achieved. Additionally, a pretreatment of Leishmania parasites with Amphotericin B, diminished their interaction with casein. This findings and methodology are very useful for drug efficacy assessment

    Numerical Study of Lid-Driven Hybrid Nanofluid Flow in a Corrugated Porous Cavity in the Presence of Magnetic Field

    No full text
    The lid-driven top wall’s influence combined with the side walls’ waviness map induce the mixed convection heat transfer, flow behavior, and entropy generation of a hybrid nanofluid (Fe3O4–MWCNT/water), a process analyzed through the present study. The working fluid occupies a permeable cubic chamber and is subjected to a magnetic field. The governing equations are solved by employing the GFEM method. The results show that the magnetic force significantly affects the working fluid’s thermal and flow behavior, where the magnetic force’s perpendicular direction remarkably improves the thermal distribution at Re = 500. Also, increasing Ha and decreasing Re drops both the irreversibility and the heat transfer rate. In addition, the highest undulation number on the wavy-sided walls gives the best heat transfer rate and the highest irreversibility

    Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis

    No full text
    International audienceTuberculosis is a worldwide disease considered as a major health problem with high morbidity and mortality rates. Poor detection of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis remains a major obstacle to the global control of this disease. Here we report the development of a new test based on the detection of the major virulent factor of Mtb, namely the early secreted antigenic target 6-kDa protein or ESAT-6. A label free electrochemical immunosensor using an anti-ESAT-6 monoclonal antibody as a bio-receptor is described herein. Anti-ESAT-6 antibodies were first covalently immobilized on the surface of a gold screen-printed electrode functionalized via a self-assembled thiol monolayer. Interaction between the bio-receptor and ESAT-6 antigen was evaluated by square wave voltammetry method using [Fe(CN)6](3-/4-) as redox probe. The detection limit of ESAT-6 antigen was 7ng/ml. The immunosensor has also been able to detect native ESAT-6 antigen secreted in cell culture filtrates of three pathogenic strains of Mtb (CDC1551, H37RV and H8N8). Overall, this work describes an immune-electrochemical biosensor, based on ESAT-6 antigen detection, as a useful diagnostic tool for tuberculosis

    Entropy Generation in 2D Lid-Driven Porous Container with the Presence of Obstacles of Different Shapes and under the Influences of Buoyancy and Lorentz Forces

    No full text
    This paper includes a numerical investigation of a hybrid fluid containing 4% of Al2O3-Cu nanoparticles in a lid-driven container. The upper wall of the container has a high temperature and is movable. The lower wall is cool and wavy. An obstacle is set in the middle of the container for its effect on thermal activity. The medium is permeable to the fluid, and the entire system is immersed in a fixed-effect magnetic field. The digital simulation is achieved using the technique of Galerkin finite element (GFEM) which solves the differential equations. This investigation aims to know the pattern of heat transfer between the lateral walls and the lower wall of the container through the intervention of a set of conditions and criteria, namely: the strength of the magnetic field changes in the range of (Ha = 0 to 100); the chamber porosity varies in the range of (Da = 10−5 to 10−2); the strength of buoyancy force is varied according to the Grashof number (Gr = 102 to 104); the cross-section of the baffle includes the following shapes—elliptical, square, triangular and circular; the surface of the lower wall contains waves; and the number changes (N = 2 to 8). Through this research, it was concluded that the triangular shape of the baffle is the best in terms of thermal activity. Also, increasing the number of lower-wall waves reduces thermal activity. For example, the change in the shape of the obstacle from the elliptical to triangular raises the value of Nu number at a rate of 15.54% for Ha = 0, N = 8, and Gr = 104

    Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode.

    No full text
    International audienceInfluenza is a viral infectious disease considered as a source of many health problems and enormous socioeconomic disruptions. Conventional methods are inadequate for in-field detection of the virus and generally suffer from being laborious and time-consuming. Thus, studies aiming to develop effective alternatives to conventional methods are urgently needed. In this work, we developed an approach for the isolation and detection of influenza A virus subtype H9N2. For this aim, two specific influenza receptors were used. The first, anti-matrix protein 2 (M2) antibody, was attached to iron magnetic nanoparticles (MNPs) and used for the isolation of the virus from allantoic fluid. The second biomolecule, Fetuin A, was attached to an electrochemical detectable label, gold nanoparticles (AuNPs), and used to detect the virus tacking advantage from fetuin-hemagglutinin interaction. The MNP-Influenza virus-AuNP formed complex was isolated and treated by an acid solution then the collected gold nanoparticles were deposited onto a screen printed carbon electrode. AuNPs catalyzes the hydrogen ions reduction in acidic medium while applying an appropriate potential, and the generated current signal was proportional to the virus titer. This approach allows the rapid detection of influenza virus A/H9N2 at a less than 16 HAU titer
    corecore