
An Approach for Verifying Concurrent C Programs

Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Kamel Barkaoui,

Serge Haddad

To cite this version:

Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Kamel Barkaoui, Serge Haddad. An
Approach for Verifying Concurrent C Programs. 8th Junior Researcher Workshop on Real-Time
Computing, Oct 2014, Versailles, France. Proceedings of 8th Junior Researcher Workshop on
Real-Time Computing, pp.33-36. <hal-01315749>

HAL Id: hal-01315749

https://hal.archives-ouvertes.fr/hal-01315749

Submitted on 13 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52671503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01315749

An Approach for Verifying Concurrent C Programs

Amira Methni,
Matthieu Lemerre,

Belgacem Ben Hedia
CEA, LIST,

91191 Gif-sur-Yvette, France

first.last@cea.fr

Kamel Barkaoui
CEDRIC Laboratory, CNAM,

Paris, France

kamel.barkaoui@cnam.fr

Serge Haddad
LSV, ENS Cachan, & CNRS &

INRIA, France

haddad@lsv.ens-cachan.fr

ABSTRACT
As software system and its complexity are fast growing,
software correctness becomes more and more a crucial is-
sue. We address the problem of verifying functional prop-
erties of real-time operating system (microkernel) imple-
mented with C. We present a work-in-progress approach for
formally specifying and verifying concurrent C programs di-
rectly based on the semantics of C. The basis of this ap-
proach is to automatically translate a C code into a TLA+
specification which can be checked by the TLC model checker.
We define a set of translation rules and implement it in a
tool (C2TLA+) that automatically translates C code into
a TLA+ specification. Generated specifications can be in-
tegrated with manually written specifications that provide
primitives that cannot be expressed in C, or that provide
abstract versions of the generated specifications to address
the state-explosion problem.

1. INTRODUCTION
Formal software verification has become a more and more

important issue for ensuring the correctness of a software
system implementation. The verification of such system is
challenging: system software is typically written in a low-
level programming language with pointers and pointer arith-
metic, and is also concurrent using synchronization mecha-
nisms to control access to shared memory locations. We
address these issues in the context of formal verification of
operating systems microkernels written in C programming
language. We note that we are interested to check functional
properties of the microkernel and not timed properties.

In this paper we present a work-in-progress approach for
formally specifying and verifying C concurrent programs us-
ing TLA+ [11] as formal framework. The proposed approach
is based on the translation from C code to a TLA+ speci-
fication. We propose a translator called C2TLA+ that can
automatically translate from a given C code an operational
specification on which back-end model checking techniques
are applied to perform verification. The generated speci-
fication can be used to find runtime errors in the C code.
In addition, they can be completed with manually written
specifications to check the C code against safety or liveness
properties and to provide concurrency primitives or model
hardware that cannot be expressed in C. The manually writ-
ten specifications can also provide abstract versions of trans-
lated C code to address the state space explosion problem.

Why TLA+?.
The choice of TLA+ is motivated by several reasons. TLA+

is sufficiently expressive to specify the semantics of a pro-
gramming language as well as safety and liveness properties
of concurrent systems [10]. Its associated model checker,

TLC, is used to validate the specifications developed and
is also supported by the TLAPS prover. TLA+ provides a
mechanism for structuring large specifications using differ-
ent levels of abstraction and it also allows an incremental
process of specification refinement. So we can focus on rele-
vant details of the system by abstracting away the irrelevant
ones.

Outline.
The rest of the paper is organized as follows. We dis-

cuss related work in Section 2. We give an overview of the
formal language that we used (TLA+) in Section 3. Sec-
tion 4 presents the global approach and our current work.
Section 5 concludes and presents future research directions.

2. RELATED WORK
There exist a wealth of work on automated techniques

for formal software verification. The seL4 [9] is the first OS
kernel that is fully formally verified. The verification of seL4
has required around 25 person-years of research devoted to
developing their proofs and more than 150,000 lines of proof
scripts. Deductive techniques are rigorous but require labor-
intensive as well as considerable skill in formal logic. We
focus here on more closely related work based on the model
checking technique.

SLAM [2] and BLAST [6] are both software verification
tools that implement the counter-example-guided predicate
abstraction refinement (CEGAR) approach [5]. They use an
automatic technique to incrementally construct abstractions
i.e. abstract models cannot be chosen by user. But, SLAM
cannot deal with concurrency and BLAST cannot handle
recursion.

Another approach consists to transform the C code into
the input language of a model checker. Modex [8] can auto-
matically extract a Promela model from a C code implemen-
tation. The generated Promela model can then be checked
with SPIN [7] model checker. As Promela does not handle
pointer and has no procedure calls, Modex handles these
missing features by including embedded code inside Promela
specifications. On the other hand, the embedded code frag-
ments cannot be checked by SPIN and might contain a di-
vision by zero error or null pointer dereference, Modex in-
struments additional checks by using assertions. But, not all
errors can be anticipated and the model checker can crash
[8]. CBMC [3] is a bounded model checker for ANSI C pro-
grams. It translates a C code into a formula (in Static Single
Assignment form) which is then fed to a SAT or SMT solver
to check its satisfiability. It can only check safety properties.
CBMC explores program behavior exhaustively but only up
to a given depth, i.e. it is restricted to programs without

deep loops [4].
In this work, we propose a methodology to specify and

verify C software systems using TLA+ as formal frame-
work. With TLA+, we can express safety and liveness prop-
erties unlike SLAM, BLAST and CBMC which have limited
support for concurrent properties as they only check safety
properties. Our approach uses abstraction and refinement
in order to structure specifications and mitigate the state
explosion problem for modular reasoning which is not the
case of Spin and CBMC.

3. AN OVERVIEW OF TLA+
TLA+ is a formal specification language based on the

Temporal Logic of Actions (TLA) [10] for the description of
reactive and distributed systems. TLA combines two logics:
a logic of actions and a temporal logic. To specify a system
in TLA, one describes its allowed behaviors. A behavior is
an infinite sequence of states that represents a conceivable
execution of the system. A state is an assignment of val-
ues to variables. A state predicate or a predicate for short
is a boolean expression built from variables and constant
symbols. An action is an expression formed from unprimed
variables, primed variables and constant symbols. It repre-
sents a relation between old states and new states, where
the unprimed variables refer to the old state and the primed
variables refer to the new state. For example, x = y ′ + 2 is
an action asserting that the value of x in the old state is two
greater that the value of y in the new state.

Formulas in TLA are build from actions using boolean
connectives, TLA quantification and temporal operators 2

(always). The expression [A]vars where A is an action and
vars the tuple of all system variables, is defined as A ∨
vars ′ = vars. It states that either A holds between the
current and the next state or the values of vars remain un-
changed when passing to the next state.

A TLA+ specification consists on a single mathematical
formula Spec defined by:

Spec , Init ∧ 2[Next]vars ∧ Fairness (1)

where

• Init is the predicate describing all legal initial states,
• Next is the next-state action defining all possible steps

of the system,
• Fairness is a temporal formula that specifies fairness

assumptions about the execution of actions.

The formula Spec is true of a behavior iff Init is true of the
first state and every state that satisfies Next or a “stuttering
step” that leaves all variables vars unchanged.

To show that a property holds for a program, we must
check that the program implements the property φ, which
is formalized as Spec ⇒ φ. This formula is said to be valid
iff every behavior that satisfies Spec also satisfies φ.

Moreover, TLA+ has a model checker (TLC) that allows
to check if a given model satisfies a given TLA formula. TLC
can handle a subclass of TLA+ specifications that we believe
includes most specification that describe our systems.

4. SPECIFICATION AND VERIFICATION
APPROACH

The specification and verification approach is illustrated
in Figure 1. The first step of the approach is to automat-
ically translate a C code implementation to a TLA+ spec-
ification using the translator that we developed C2TLA+.

Figure 1: Specification and verification approach

C2TLA+ uses CIL [13] to transform intricate constructs of
C into simpler ones. After obtaining the Abstract Syntax
Tree (AST) of the normalized C code, C2TLA+ generates
a TLA+ specification according to a set of translation rules
that we define in Subsection 4.2. The generated specifica-
tions can be checked by TLC without any user interaction
for potential C errors.

TLA+ specifications are organized into modules that can
be reused independently. The methodology provides for the
user the possibility to connect generated modules to other
manually specified modules. These latter can model syn-
chronization primitives like “compare-and-swap” and “test-
and-set” instructions, model hardware like interruptions, or
provide an abstract model of a specification. All modules
are integrated together to form the whole system to verify.
The user defines a set of safety and liveness properties ex-
pressed in TLA and TLC explores all reachable states in the
model, looking for one in which (a) an invariant is violated,
(b) deadlock occurs (there is no possible state), (c) the type
declaration is violated. When a property is violated, TLC
produces the minimal length trace that leads from the initial
state to the bad state. To improve usability, we reimplement
this trace in the C code. In addition, TLC also collects cov-
erage information by reporting the number of times each
action of a specification was “executed” to construct a new
state. This information is used to generate the C code cover-
age of an implementation, which may be helpful for finding
untested parts of the C code.

4.1 Considered features
We handle a subset of C according to simplifications done

by CIL. The C aspects that we consider include basic data-
types (int, struct, enum), arrays, pointers, pointer arith-
metic, all kinds of control flow statements, function calls,
recursion and concurrency. We do not yet consider floating
point operations, non-portable conversions between objects
of different types, dynamic allocation, function calls through
pointers, and assignment of structs. We note that these fea-
tures are not needed by the system that we aim to check.

4.2 Translation from C to TLA+

4.2.1 Concurrency and memory layout
A concurrent program consists in many interleaved se-

quences of operations called processes, corresponding to

threads in C. C2TLA+ assigns to each process a unique
identifier id .

The memory of a concurrent C program is divided by
C2TLA+ into four regions:

• A region that indicates for each process where is in its
program sequence. This region is modeled by a TLA+
variable stack regs, associating to each process a stack
of records. Each record contains two fields:

– pc, the program counter, points to the current
statement of the function being executed, repre-
sented by a tuple 〈function name, label〉;

– fp, the frame pointer, contains the base offset of
the current stack frame.

The top of each stack register (Head(stack regs[id]))
indicates the registers of the function being currently
executed.
• A region that contains global (and static) variables and

called mem. It is modeled by an array and it is shared
by all processes.
• A region called stack data and contains stack frames.

Each process has its own stack which contains the pa-
rameters of a function and its local variables. Stack
frames are pushed when calling a function and popped
when returning.
• A region that contains values to be returned by pro-

cesses and it is modeled by an array indexed by the
process identifier, called ret.

Figure 2 gives an example of a C code in which one process
(with id equals “p1”) executes p1() function and the second
one (with id equals “p2”) executes p2() function. C2TLA+
assigns to each C variable a unique constant that we called
“address”. This latter specifies the memory region where
data is stored (local or global) and the offset of the data
in the memory region. For example, the TLA+ expression
[loc 7→ ”mem”, offs 7→ 0] denotes the record Addr count
such that Addr count.loc equals ”mem” and Addr count.offs
equals 0.

Figure 2: Example of a C code and its memory rep-
resentation in TLA+

4.2.2 Loading and assignment
Variable names, fields data structure and arrays in C

are lvalues. C2TLA+ translates an lvalue into an ad-
dress. Loading an lvalue is performed by the TLA+ operator
load(). An assignment of an lvalue is translated by C2TLA+
using the store() operator which saves the value of the right-
hand operand into the memory location of the lvalue. The
definition of load() and store() are given in Figure 3. For

example, accessing to the value of count is expressed by the
TLA+ expression load(id,Addr count).

load(id, ptr) ∆
=

if ptr .loc =“mem”then mem[ptr .offs]
else stack data[id][Head(stack regs[id]).fp + ptr .offs]

store(id, ptr , value) ∆
=

∨ ∧ ptr .loc =“mem”
∧mem′ = [mem except ! [ptr .offs] = value]
∧ unchanged stack data

∨ ∧ ptr .loc =“stack data”
∧ stack data′ = [stack data except

! [id][Head(stack regs[id]).fp + ptr .offs] = value]
∧ unchanged mem

Figure 3: Definition of load() and store() operators

4.2.3 Function definition
A C function definition is translated into an operator with

the process identifier id as argument. Translating the func-
tion body consists of the disjunction of translating each
statement that contains. C2LTA+ uses label values given by
CIL to identify statements and each C statement is trans-
lated into an atomic action defined as a conjunction of sub-
actions. At a given state one and only one action is eval-
uated to true. Each action updates the stack regs variable
by modifying its head by the label value of the action done
once the call has finished.

4.2.4 Function call
Each function call results in a creation of a stack frame

onto the local memory stack regs[id] of the process id . The
stack frame contains local variables and formal parameters
which are initialized with the values with which the func-
tion was called. Then, the program counter is updated by
changing its head to a record whose pc field points to the
action done once the call has finished (the instruction fol-
lowing the function call). At the top of the stack register is
pushed a record whose pc field points to the first statement
of the called function, and fp field points to the base address
of the new stack frame.

4.2.5 Return statement
Once the function returns, the returned value is stored on

value returning memory ret. Its stack frame and the top
of the stack register are popped and the program control is
returned to the statement immediately following the call.

4.3 Checking the specification
C2TLA+ generates the main specification Spec that de-

scribes the execution of the C program.

• The Init predicate which specifies the initial values of
all variables.
• The tuple of all variables vars ∆

=
〈mem, stack data, stack regs, ret〉.
• The predicate process(id) defines the next-state
action of the process id . It asserts that one of the
functions is being executed until its stack register
becomes empty. For the example of Figure 2, the
process() predicate is defined as:

process(id) ∆
= ∧ stack regs[id] 6= 〈〉

∧(add(id) ∨ p1(id) ∨ p2(id))

• The Next action states that one process is non-
deterministically selected among those which can
take an execution step or that leaves all vari-
ables unchanged when all processes terminate.

Next ∆
=

∨ ∃ id ∈ ProcSet : process(id)
∨(∀ id ∈ ProcSet : (stack regs[id] = 〈〉)∧ (unchanged vars))

• The main specification is defined by Spec ∆
=

Init ∧ 2[Next]vars ∧WFvars(Next). To check liveness
properties in the system, we must consider fairness as-
sumptions.

The generated specification can be directly checked by
TLC. In that case, errors reported by TLC correspond to
runtime errors in the C code, e.g. dereferencing null-pointer,
uninitialized data access and division by zero.

4.4 Integrating abstract models
When checking whether a concurrent program satisfies a

given properties, the size of the state space of the program
limits the application of the model checking. A way to tackle
the state space explosion problem is abstraction. A program
usually have internal actions which need not to be considered
in the verification process. Ignoring such actions reduces the
state space of the program and makes the model checking
feasible. With TLA+, it is possible to define different levels
of abstraction and model check the existence of refinement
relationship between two specifications. A specification R
is a refinement of an abstract specification S iff R ⇒ S .
This is true iff there exists a refinement mapping between
the two specifications R and S . The refinement mapping [1]
maps states of the concrete specification with states of ab-
stract specification. From a generated TLA+ specification
by C2TLA+, TLC can check if this specification refines an
abstract model w.r.t. a refinement relation which preserves
the properties of the abstract system.

4.5 Results and current work
Currently, we developed the translator C2TLA+ which

automatically generates a TLA+ specification from C code.
The translator is based on the semantics of C. We assume
that generated specification behaves exactly as the C pro-
gram. We tried many academic examples of C code that we
checked using C2TLA+ and TLC. Actually, we are applying
the methodology on a critical part of the microkernel of the
PharOS [12] real-time operating system (RTOS). This part
consists of a distributed version of the scheduling algorithm
of the RTOS tasks. Examples of properties that we aim to
check include safety properties e.g. that all spinlocks pro-
tect the critical sections, at any instant of time, the system
schedules the (ready) task having earliest deadline, and also
liveness properties e.g. if a thread entered its critical section,
it will eventually leave it.

5. CONCLUSION AND FUTURE WORK
We have proposed an approach for specifying and verify-

ing concurrent C programs based on an automated trans-
lation from C to TLA+. The goal of the approach is to
make concrete and abstract specifications interact. Abstract
models can define aspects not expressed in C code like con-
currency primitives, or define an abstract specification of a
concrete one. Using model checking technique, we can check
the refinement relations between two specifications and the
correctness properties of the whole system.

We aim to extend this work along several directions. We
plan to further study the use of TLA+ modules with differ-
ent levels of refinement. We also plan to check equivalence
between a C code and another simplified C code. The sim-
plified code contains less steps which would reduce the state
space of the system to verify. Another avenue of future work

include updating the translator to support missing features.
It would be interesting to profit from data analysis in C in
order to generate TLA+ code with less interleaving between
the processes. Finally, we plan to use the TLA+ proof sys-
tem to prove properties on an abstract TLA+ specification
and prove that a generated specification by C2TLA+ is a
refinement of this abstract specification.

We must remind that we are reporting the current state of
a work in progress and we shall further improvement in the
approach process and making it applicable on a considerable
case study.

6. REFERENCES
[1] M. Abadi and L. Lamport. The existence of refinement

mappings. Theor. Comput. Sci., 82(2):253–284, 1991.

[2] T. Ball and S. K. Rajamani. The SLAM project:
Debugging System Software via Static Analysis.
SIGPLAN Not, 2002.

[3] E. Clarke, D. Kroening, and F. Lerda. A Tool for
Checking ANSI-C Programs. In K. Jensen and
A. Podelski, editors, TACAS, volume 2988 of Lecture
Notes in Computer Science, pages 168–176. Springer,
2004.

[4] V. D’Silva, D. Kroening, and G. Weissenbacher. A
Survey of Automated Techniques for Formal Software
Verification . IEEE Trans. on CAD of Integrated
Circuits and Systems, 27(7):1165–1178, 2008.

[5] E. A. Emerson and A. P. Sistla, editors. Computer
Aided Verification, 12th International Conference,
CAV 2000, Chicago, IL, USA, July 15-19, 2000,
Proceedings, volume 1855 of Lecture Notes in
Computer Science. Springer, 2000.

[6] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Software Verification with BLAST. pages
235–239. Springer, 2003.

[7] G. J. Holzmann. The Model Checker SPIN. IEEE
Trans. Software Eng., 23(5):279–295, 1997.

[8] G. J. Holzmann. Trends in Software Verification. In
Proceedings of the Formal Methods Europe Conference,
Lecture Notes in Computer Science, pages 40–50.
Springer, 2003.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal Verification of an OS
Kernel. In SOSP, pages 207–220, New York, USA,
2009.

[10] L. Lamport. The Temporal Logic of Actions. ACM
Trans. Program. Lang. Syst., 16(3):872–923, 1994.

[11] L. Lamport. Specifying Systems, The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

[12] M. Lemerre, E. Ohayon, D. Chabrol, M. Jan, and
M.-B. Jacques. Method and Tools for
Mixed-Criticality Real-Time Applications within
PharOS. In Proceedings of AMICS 2011: 1st
International Workshop on Architectures and
Applications for Mixed-Criticality Systems, 2011.

[13] G. C. Necula, S. Mcpeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate Language and Tools
for Analysis and Transformation of C Programs. In
International Conference on Compiler Construction,
pages 213–228, 2002.

