144 research outputs found

    Hypospadias : Analysis of a complex genetic disorder

    Get PDF
    BACKGROUND: Hypospadias is a common inborn error of the male urethra that involves an abnormally placed urethral opening. Its complex etiology is largely elusive to date. Twin and familial studies highlight a genetic background in hypospadias. Environmental factors have also been identified, particularly the exposure to endocrine disrupters. For most of the cases, pedigree analyses indicate a heterogeneous, complex pattern of inheritance, with several genetic and environmental factors interacting, yielding high heritability indices. Hypospadias is therefore said to be a complex genetic disorder. HYPOTHESIS: As an inborn error of development, hypospadias may be induced by disturbances in the pathways of urethral development, which comprise genetic programming, cell differentiation, hormonal signaling, enzyme activity, and tissue remodeling; and follows an orderly sequence. We proposed that gene variants in FGF8, FGF10, FGFR2 and BMP7, important genes in the early urethral development; in FKBP52, an androgen receptor cochaperone; in the estrogen receptor (ESR) genes 1 and 2; and ATF3, an estrogen responsive gene; may influence the risk to hypospadias. STRATEGY: Using a candidate gene strategy, we performed comprehensive analysis of these genes in DNA from boys with hypospadias and controls, including sequence analysis, genotyping and association studies; and complementary expression analysis in human tissues. RESULTS: Our results indicate that gene variants in the sequence of FGF8, FGFR2, two androgenā€regulated developmental genes; and of ESR2 and ATF3, two estrogen related genes, are associated with hypospadias. We have shown that the last is expressed in the human developing male urethra. DISCUSSION: The molecular mechanisms involved in the development of external genitalia during fetal life seem to depend on a complex balance between early morphogenetic cellā€cell interactions; and between sex steroid hormones. These balances can be disturbed by the exposure to environmental endocrine disruptors. Ethnical differences in the response to such exposures denote that genetic factors also play an important role. The involvement of sequence variants in FGFR2, FGF8, ESR2 and ATF3, hormonal responsive genes, in hypospadias is reported in this thesis, increasing the understanding on the complex etiology of hypospadias. Further genetic analysis and geneā€environment studies are encouraged

    DescriĆ§Ć£o de uma forma autossĆ“mica dominante de sĆ­ndrome de Kabuki por mutaĆ§Ć£o no gene MLL2

    Get PDF
    Aims: Although there are more than 400 cases of Kabuki syndrome described in the literature, it is believed that this syndrome is under-diagnosed. Most cases occur sporadically, despite cases with autosomal dominant familial transmission being described. Here we describe three cases identified in the same family. Cases description: A family (mother and two children) was diagnosed with Kabuki syndrome. The three patients show the typical characteristics (facial appearance, musculoskeletal abnormalities, cognitive impairment, growth retardation and peculiar dermatoglyphic pattern) associated with other anomalies described in the syndrome (congenital heart disease and increased susceptibility to infections). Genetic studies revealed a nonsense mutation c.14710 C > T (p.Arg4904X) in the MLL2 gene in the three members of the family. Conclusions: With the description of another case of familial Kabuki syndrome, the authors wish to illustrate the autosomal dominant inheritance with variable expressivity, which are present in this situation, and to alert to the need for a rigorous clinical and molecular evaluation of the affected patientā€™s relatives, allowing appropriate genetic counseling

    Diagnostic yield of rare skeletal dysplasia conditions in the radiogenomics era

    Get PDF
    Background Skeletal dysplasia (SD) conditions are rare genetic diseases of the skeleton, encompassing a heterogeneous group of over 400 disorders, and represent approximately 5% of all congenital anomalies. Developments in genetic and treatment technologies are leading to unparalleled therapeutic advances; thus, it is more important than ever to molecularly confirm SD conditions. Data on ā€˜rates-of-molecular yieldsā€™ in SD conditions, through exome sequencing approaches, is limited. Figures of 39% and 52.5% have been reported in the USA (nā€‰=ā€‰54) and South Korea (nā€‰=ā€‰185) respectively. Methods We discuss a single-centre (in the UK) experience of whole-exome sequencing (WES) in a cohort of 15 paediatric patients (aged 5 months to 12 years) with SD disorders previously molecularly unconfirmed. Our cohort included patients with known clinical diagnoses and undiagnosed skeletal syndromes. Extensive phenotyping and expert radiological review by a panel of international SD radiology experts, coupled with a complex bioinformatics pipeline, allowed for both gene-targeted and gene-agnostic approaches. Results Significant variants leading to a likely or confirmed diagnosis were identified in 53.3% (nā€‰=ā€‰8/15) of patients; 46.7% (nā€‰=ā€‰7/15) having a definite molecular diagnosis and 6.7% (nā€‰=ā€‰1/15) having a likely molecular diagnosis. We discuss this in the context of a rare disease in general and specifically SD presentations. Of patients with known diagnoses pre-WES (nā€‰=ā€‰10), molecular confirmation occurred in 7/10 cases, as opposed to 1/5 where a diagnosis was unknown pre-test. Thus, diagnostic return is greatest where the diagnosis is known pre-test. For WGS (whole genome sequencing, the next iteration of WES), careful case selection (ideally of known diagnoses pre-test) will yield highest returns. Conclusions Our results highlight the cost-effective use of WES-targeted bioinformatic analysis as a diagnostic tool for SD, particularly patients with presumed SD, where detailed phenotyping is essential. Thorough co-ordinated clinical evaluation between clinical, radiological, and molecular teams is essential for improved yield and clinical care. WES (and WGS) yields will increase with time, allowing faster diagnoses, avoiding needless investigations, ensuring individualised patient care and patient reassurance. Further diagnoses will lead to increased information on natural history/mechanistic details, and likely increased therapies and clinical trials

    47 patients with FLNA associated periventricular nodular heterotopia

    Get PDF
    Background: Heterozygous loss of function mutations within the Filamin A gene in Xq28 are the most frequent cause of bilateral neuronal periventricular nodular heterotopia (PVNH). Most affected females are reported to initially present with difficult to treat seizures at variable age of onset. Psychomotor development and cognition may be normal or mildly to moderately impaired. Distinct associated extracerebral findings have been observed and may help to establish the diagnosis including patent ductus arteriosus Botalli, progressive dystrophic cardiac valve disease and aortic dissection, chronic obstructive lung disease or chronic constipation. Genotype-phenotype correlations could not yet be established. Methods: Sanger sequencing and MLPA was performed for a large cohort of 47 patients with Filamin A associated PVNH (age range 1 to 65Ā years). For 34 patients more detailed clinical information was available from a structured questionnaire and medical charts on family history, development, epileptologic findings, neurological examination, cognition and associated clinical findings. Available detailed cerebral MR imaging was assessed for 20 patients. Results: Thirty-nine different FLNA mutations were observed, they are mainly truncating (37/39) and distributed throughout the entire coding region. No obvious correlation between the number and extend of PVNH and the severity of the individual clinical manifestation was observed. 10 of the mutation carriers so far are without seizures at a median age of 19.7Ā years. 22 of 24 patients with available educational data were able to attend regular school and obtain professional education according to age. Conclusions: We report the clinical and mutation spectrum as well as MR imaging for a large cohort of 47 patients with Filamin A associated PVNH including two adult males. Our data are reassuring in regard to psychomotor and cognitive development, which is within normal range for the majority of patients. However, a concerning median diagnostic latency of 17 to 20Ā years was noted between seizure onset and the genetic diagnosis, intensely delaying appropriate medical surveillance for potentially life threatening cardiovascular complications as well as genetic risk assessment and counseling prior to family planning for this X-linked dominant inherited disorder with high perinatal lethality in hemizygous males

    Studies of a co-chaperone of the androgen receptor, FKBP52, as candidate for hypospadias

    Get PDF
    BACKGROUND: Hypospadias is a common inborn error of the male urethral development, for which the aetiology is still elusive. Polymorphic variants in genes involved in the masculinisation of male genitalia, such as the androgen receptor, have been associated with some cases of hypospadias. Co-regulators of the androgen receptor start being acknowledged as possible candidates for hormone-resistance instances, which could account for hypospadias. One such molecule, the protein FKBP52, coded by the FKBP4 gene, has an important physiological role in up-regulating androgen receptor activity, an essential step in the development of the male external genitalia. The presence of hypospadias in mice lacking fkbp52 encouraged us to study the sequence and the expression of FKBP4 in boys with isolated hypospadias. PATIENTS AND METHODS: The expression of FKBP52 in the genital skin of boys with hypospadias and in healthy controls was tested by immunohistochemistry. Mutation screening in the FKBF4 gene was performed in ninety-one boys with non syndromic hypospadias. Additionally, two polymorphisms were typed in a larger cohort. RESULTS: Immunohistochemistry shows epithelial expression of FKBP52 in the epidermis of the penile skin. No apparent difference in the FKBP52 expression was detected in healthy controls, mild or severe hypospadias patients. No sequence variants in the FKBP4 gene have implicated in hypospadias in our study. CONCLUSION: FKBP52 is likely to play a role in growth and development of the male genitalia, since it is expressed in the genital skin of prepubertal boys; however alterations in the sequence and in the expression of the FKBP4 gene are not a common cause of non-syndromic hypospadias

    Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome.

    Get PDF
    CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome

    Biallelic and monoallelic ESR2 variants associated with 46,XY disorders of sex development

    Get PDF
    Purpose: Disorders or differences of sex development (DSDs) are rare congenital conditions characterized by atypical sex development. Despite advances in genomic technologies, the molecular cause remains unknown in 50% of cases. Methods: Homozygosity mapping and whole-exome sequencing revealed an ESR2 variant in an individual with syndromic 46, XY DSD. Additional cases with 46, XY DSD underwent whole-exome sequencing and targeted next-generation sequencing of ESR2. Functional characterization of the identified variants included luciferase assays and protein structure analysis. Gonadal ESR2 expression was assessed in human embryonic data sets and immunostaining of estrogen receptor-beta (ER-beta) was performed in an 8-week-old human male embryo. Results: We identified a homozygous ESR2 variant, c.541_543del p. (Asn181del), located in the highly conserved DNA-binding domain of ER-beta, in an individual with syndromic 46, XY DSD. Two additional heterozygous missense variants, c.251G>T p.(Gly84Val) and c.1277T>G p.(Leu426Arg), located in the N-terminus and the ligand-binding domain of ER-beta, were found in unrelated, nonsyndromic 46, XY DSD cases. Significantly increased transcriptional activation and an impact on protein conformation were shown for the p.(Asn181del) and p.(Leu426Arg) variants. Testicular ESR2 expression was previously documented and ER-beta immunostaining was positive in the developing intestine and eyes. Conclusion: Our study supports a role for ESR2 as a novel candidate gene for 46, XY DSD

    Complex aetiology of an apparently Mendelian form of Mental Retardation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mental Retardation is a common heterogeneous neurodevelopment condition, which causes are still largely elusive. It has been suggested that half of the phenotypic variation of intelligence is explained by genetic variation. And genetic or inherited factors indeed account for most of the cases of mental retardation with an identifiable cause. However, only a few autosomal genes have been mapped and identified to date. In this report, the genetic causes for an apparently recessive form of mental retardation, in a large nordern swedish pedigree, are investigated.</p> <p>Methods</p> <p>After extensive evaluation of the patients, which ruled out recognizable patterns of malformation and excluded known causes of MR, a comprehensive genome-wide linkage analysis, with 500 microsatellite markers, was performed in 24 members of this family. Additionally, a genome-wide copy number analysis, using an affimetrix 250 K SNP chip, was performed in this pedigree.</p> <p>Results</p> <p>No significant LOD score was found with either parametric and non-parametric linkage analysis. The highest scores are located at chromosomes 13, 15 and 17. Genome-wide copy number analysis identified no clear cause for the disorder; but rather, several variants were present in the family members, irrespective of their affected status.</p> <p>Conclusion</p> <p>These results suggest that mental retardation in this family, unlikely what was expected, has a heterogeneous aetiology; and that several lower effect genes variants might be involved. To demonstrate such effects, our family may be too small. This study also indicates that the ascertainment of the cause of MR may be challenging, and that a complex aetiology may be present even within a pedigree, constituting an additional obstacle for genetic counselling. Variants in genes involved in molecular mechanisms of cellular plasticity, in genes involved in the development of underlying neural architectures, and in genes involved in neurodevelopment and in the ongoing function of terminally differentiated neurons may underlie the phenotypic variation of intelligence and explain instances of intellectual impairment.</p

    Mutation Analysis of NR5A1 Encoding Steroidogenic Factor 1 in 77 Patients with 46, XY Disorders of Sex Development (DSD) Including Hypospadias

    Get PDF
    BACKGROUND: Mutations of the NR5A1 gene encoding steroidogenic factor-1 have been reported in association with a wide spectrum of 46,XY DSD (Disorder of Sex Development) phenotypes including severe forms of hypospadias. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the frequency of NR5A1 gene mutations in a large series of patients presenting with 46,XY DSD and hypospadias. Based on their clinical presentation 77 patients were classified either as complete or partial gonadal dysgenesis (uterus seen at genitography and/or surgery, nā€Š=ā€Š11), ambiguous external genitalia without uterus (nā€Š=ā€Š33) or hypospadias (nā€Š=ā€Š33). We identified heterozygous NR5A1 mutations in 4 cases of ambiguous external genitalia without uterus (12.1%; p.Trp279Arg, pArg39Pro, c.390delG, c140_141insCACG) and a de novo missense mutation in one case with distal hypospadias (3%; p.Arg313Cys). Mutant proteins showed reduced transactivation activity and mutants p.Arg39Pro and p.Arg313Cys did not synergize with the GATA4 cofactor to stimulate reporter gene activity, although they retained their ability to physically interact with the GATA4 protein. CONCLUSIONS/SIGNIFICANCE: Mutations in NR5A1 were observed in 5/77 (6.5%) cases of 46,XY DSD including hypospadias. Excluding the cases of 46,XY gonadal dysgenesis the incidence of NR5A1 mutations was 5/66 (7.6%). An individual with isolated distal hypopadias carried a de novo heterozygous missense mutation, thus extending the range of phenotypes associated with NR5A1 mutations and suggesting that this group of patients should be screened for NR5A1 mutations

    Sporadic ALS has compartment-specific aberrant exon splicing and altered cellā€“matrix adhesion biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive weakness from loss of motor neurons. The fundamental pathogenic mechanisms are unknown and recent evidence is implicating a significant role for abnormal exon splicing and RNA processing. Using new comprehensive genomic technologies, we studied exon splicing directly in 12 sporadic ALS and 10 control lumbar spinal cords acquired by a rapid autopsy system that processed nervous systems specifically for genomic studies. ALS patients had rostral onset and caudally advancing disease and abundant residual motor neurons in this region. We created two RNA pools, one from motor neurons collected by laser capture microdissection and one from the surrounding anterior horns. From each, we isolated RNA, amplified mRNA, profiled whole-genome exon splicing, and applied advanced bioinformatics. We employed rigorous quality control measures at all steps and validated findings by qPCR. In the motor neuron enriched mRNA pool, we found two distinct cohorts of mRNA signals, most of which were up-regulated: 148 differentially expressed genes (P ā‰¤ 10āˆ’3) and 411 aberrantly spliced genes (P ā‰¤ 10āˆ’5). The aberrantly spliced genes were highly enriched in cell adhesion (P ā‰¤ 10āˆ’57), especially cellā€“matrix as opposed to cellā€“cell adhesion. Most of the enriching genes encode transmembrane or secreted as opposed to nuclear or cytoplasmic proteins. The differentially expressed genes were not biologically enriched. In the anterior horn enriched mRNA pool, we could not clearly identify mRNA signals or biological enrichment. These findings, perturbed and up-regulated cellā€“matrix adhesion, suggest possible mechanisms for the contiguously progressive nature of motor neuron degeneration. Data deposition: GeneChip raw data (CEL-files) have been deposited for public access in the Gene Expression Omnibus (GEO), www.ncbi.nlm.nih.gov/geo, accession number GSE18920
    • ā€¦
    corecore