1,273 research outputs found

    Adjustment of a turbulent boundary layer to a 'canopy' of roughness elements

    Get PDF
    A model is developed for the adjustment of the spatially averaged time-mean flow of a deep turbulent boundary layer over small roughness elements to a canopy of larger three-dimensional roughness elements. Scaling arguments identify three stages of the adjustment. First, the drag and the finite volumes of the canopy elements decelerate air parcels; the associated pressure gradient decelerates the flow within an impact region upwind of the canopy. Secondly, within an adjustment region of length of order Lc downwind of the leading edge of the canopy, the flow within the canopy decelerates substantially until it comes into a local balance between downward transport of momentum by turbulent stresses and removal of momentum by the drag of the canopy elements. The adjustment length, Lc, is proportional to (i) the reciprocal of the roughness density (defined to be the frontal area of canopy elements per unit floor area) and (ii) the drag coefficient of individual canopy elements. Further downstream, within a roughness-change region, the canopy is shown to affect the flow above as if it were a change in roughness length, leading to the development of an internal boundary layer. A quantitative model for the adjustment of the flow is developed by calculating analytically small perturbations to a logarithmic turbulent velocity profile induced by the drag due to a sparse canopy with L/Lc≪1, where L is the length of the canopy. These linearized solutions are then evaluated numerically with a nonlinear correction to account for the drag varying with the velocity. A further correction is derived to account for the finite volume of the canopy elements. The calculations are shown to agree with experimental measurements in a fine-scale vegetation canopy, when the drag is more important than the finite volume effects, and a canopy of coarse-scale cuboids, when the finite volume effects are of comparable importance to the drag in the impact region. An expression is derived showing how the effective roughness length of the canopy, \z0eff, is related to the drag in the canopy. The value of \z0eff varies smoothly with fetch through the adjustment region from the roughness length of the upstream surface to the equilibrium roughness length of the canopy. Hence, the analysis shows how to resolve the unphysical flow singularities obtained with previous models of flow over sudden changes in surface roughness

    Training Elders in the Alexandria District of the Southwest Region Conference of Seventh-day Adventists to Preach Expository Sermons

    Get PDF
    Problem. Elders are assigned to preach on Sabbath in the absence of the pastor in the Alexandria District of the Southwest Region Conference of Seventh-day Adventists. Though some have been preaching for many years, many have not had additional training in preaching. Method. The training program was designed to inform and offer practical skills on how to preach expository sermons. To demonstrate mastery of the training content, elders preached two in-seminar sermons. The better of the two sermons was preached in the elder’s respective church. Results. The elders showed significant improvement in their inseminar-preaching. Their respective churches acknowledged the improvement. Conclusions Elders can improve their preaching skills when properly trained. Properly trained elders can preach with confidence and guarantee that an empowered elder is preaching every Sabbath

    Changes in coping behavior and the relationship to personality, health threat communication and illness perceptions from the diagnosis of diabetes: a 2-year prospective longitudinal study

    Get PDF
    Coping behavior is of critical importance in diabetes because of its impact upon self-care and hence eventual medical outcome. We examined how coping behavior and its relationship to personality, diabetes health threat communication (DHTC) and illness representations changes after diagnosis of diabetes. Newly diagnosed diabetic patients were assessed after diagnosis and at 6, 12 and 24 months using the DHTC, Illness Perceptions and Coping inventory questionnaires. Personality traits were assessed at baseline. Active coping, planning, positive reinterpretation and growth (PRG), seeking emotional and instrumental (social) support decreased over the 2 years from diagnosis while passive acceptance increased. Openness/intellect and conscientiousness traits were associated with active coping and seeking instrumental support. Openness/intellect also associated with planning and PRG. These relationships did not vary over time. Perceived threat and serious consequences were associated with active coping but the effect diminished over time. Illness coherence (understanding of diabetes), personal and treatment control were associated with active coping, planning and seeking instrumental support and did not change over time. The coping strategies most commonly employed by diabetic patients are adaptive. Coping behavior changes over the 2 years from diagnosis. Promoting better understanding of diabetes, perceptions of personal control and treatment effectiveness are more likely than perception of health threat to sustain adaptive problem focused coping behavior

    Novel Low-Temperature Poss-Containing Siloxane Elastomers

    Get PDF
    One route to increased aircraft performance is through the use of flexible, shape-changeable aerodynamics effectors. However, state of the art materials are not flexible or durable enough over the required broad temperature range. Mixed siloxanes were crosslinked by polyhedral oligomeric silsesquioxanes (POSS) producing novel materials that remained flexible and elastic from -55 to 94 C. POSS molecules were chemically modified to generate homogeneous distributions within the siloxane matrix. High resolution scanning electron microscope (HRSEM) images indicated homogenous POSS distribution up to 0.8 wt %. Above the solubility limit, POSS aggregates could be seen both macroscopically and via SEM (approx.60-120 nm). Tensile tests were performed to determine Young s modulus, tensile strength, and elongation at break over the range of temperatures associated with transonic aircraft use (-55 to 94 C; -65 to 200 F). The siloxane materials developed here maintained flexibility at -55 C, where previous candidate materials failed. At room temperature, films could be elongated up to 250 % before rupturing. At -55 and 94 C, however, films could be elongated up to 400 % and 125 %, respectively

    Astrophysical Gyrokinetics: Basic Equations and Linear Theory

    Full text link
    Magnetohydrodynamic (MHD) turbulence is encountered in a wide variety of astrophysical plasmas, including accretion disks, the solar wind, and the interstellar and intracluster medium. On small scales, this turbulence is often expected to consist of highly anisotropic fluctuations with frequencies small compared to the ion cyclotron frequency. For a number of applications, the small scales are also collisionless, so a kinetic treatment of the turbulence is necessary. We show that this anisotropic turbulence is well described by a low frequency expansion of the kinetic theory called gyrokinetics. This paper is the first in a series to examine turbulent astrophysical plasmas in the gyrokinetic limit. We derive and explain the nonlinear gyrokinetic equations and explore the linear properties of gyrokinetics as a prelude to nonlinear simulations. The linear dispersion relation for gyrokinetics is obtained and its solutions are compared to those of hot-plasma kinetic theory. These results are used to validate the performance of the gyrokinetic simulation code {\tt GS2} in the parameter regimes relevant for astrophysical plasmas. New results on global energy conservation in gyrokinetics are also derived. We briefly outline several of the problems to be addressed by future nonlinear simulations, including particle heating by turbulence in hot accretion flows and in the solar wind, the magnetic and electric field power spectra in the solar wind, and the origin of small-scale density fluctuations in the interstellar medium.Comment: emulateapj, 24 pages, 10 figures, revised submission to ApJ: references added, typos corrected, reorganized and streamline

    Mercury Orbiter: Report of the Science Working Team

    Get PDF
    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems

    Early Trends in Cystatin C and Outcomes in Patients with Cirrhosis and Acute Kidney Injury

    Get PDF
    Background. Acute kidney injury (AKI) is a common and severe complication in patients with cirrhosis. Progression of AKI to a higher stage associates with increased mortality. Intervening early in AKI when renal dysfunction is worsening may improve outcomes. However, serum creatinine correlates poorly with glomerular filtration in patients with cirrhosis and fluctuations may mask progression early in the course of AKI. Cystatin C, a low-molecular-weight cysteine proteinase inhibitor, is a potentially more accurate marker of glomerular filtration. Methods. We conducted a prospective multicenter study in patients with cirrhosis comparing changes in cystatin and creatinine immediately following onset of AKI as predictors of a composite endpoint of dialysis or mortality. Results. Of 106 patients, 37 (35%) met the endpoint. Cystatin demonstrated less variability between samples than creatinine. Patients were stratified into four groups reflecting changes in creatinine and cystatin: both unchanged or decreased 38 (36%) (Scr−/CysC−); only cystatin increased 25 (24%) (Scr−/CysC+); only creatinine increased 15 (14%) (Scr+/CysC−); and both increased 28 (26%) (Scr+/CysC+). With Scr−/CysC− as the reference, in both instances where cystatin rose, Scr−/CysC+ and Scr+/CysC+, the primary outcome was significantly more frequent in multivariate analysis, and , respectively. However, when only creatinine rose, outcomes were similar to the reference group. Conclusions. Changes in cystatin levels early in AKI are more closely associated with eventual dialysis or mortality than creatinine and may allow more rapid identification of patients at risk for adverse outcomes

    Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes

    Get PDF
    Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950–1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery.National Institutes of Health (U.S.). Center for Nanotechnology Excellence (Grant U54-CA119349-04)National Institutes of Health (U.S.). Center for Nanotechnology Excellence (Grant U54-CA151884)David H. Koch Institute for Integrative Cancer Research at MIT. Frontier Research Program (Kathy and Curt Marble Cancer Research Fund)National Institute of Environmental Health Sciences (Grant P30-ES002109)Marie D. & Pierre Casimir-Lambert FundAmar G. Bose Research Gran
    corecore