400 research outputs found

    Data management to information portals

    Get PDF
    pp. 215-21

    The Energy-Signaling Hub SnRK1 Is Important for Sucrose-Induced Hypocotyl Elongation

    Get PDF
    Emerging seedlings respond to environmental conditions such as light and temperature to optimize their establishment. Seedlings grow initially through elongation of the hypocotyl, which is regulated by signaling pathways that integrate environmental information to regulate seedling development. The hypocotyls of Arabidopsis (Arabidopsis thaliana) also elongate in response to sucrose. Here, we investigated the role of cellular sugar-sensing mechanisms in the elongation of hypocotyls in response to Suc. We focused upon the role of SnRK1, which is a sugar-signaling hub that regulates metabolism and transcription in response to cellular energy status. We also investigated the role of TPS1, which synthesizes the signaling sugar trehalose-6-P that is proposed to regulate SnRK1 activity. Under light/dark cycles, we found that Suc-induced hypocotyl elongation did not occur in tps1 mutants and overexpressors of KIN10 (AKIN10/SnRK1.1), a catalytic subunit of SnRK1. We demonstrate that the magnitude of Suc-induced hypocotyl elongation depends on the day length and light intensity. We identified roles for auxin and gibberellin signaling in Suc-induced hypocotyl elongation under short photoperiods. We found that Suc-induced hypocotyl elongation under light/dark cycles does not involve another proposed sugar sensor, HEXOKINASE1, or the circadian oscillator. Our study identifies novel roles for KIN10 and TPS1 in mediating a signal that underlies Suc-induced hypocotyl elongation in light/dark cycles

    Vegetation and peat characteristics of restiad bogs on Chatham Island (Rekohu), New Zealand

    Get PDF
    Restiad bogs dominated by Sporadanthus traversii on Chatham Island, New Zealand, were sampled to correlate vegetation patterns and peat properties, and to compare with restiad systems dominated by Sporadanthus ferrugineus and Empodisma minus in the Waikato region, North Island, New Zealand. Classification and ordination resulted in five groups that reflected a disturbance gradient. The largest S. traversii group, which comprised plots from central, relatively intact bogs, had the lowest levels of total nitrogen (mean 1.20 mg cm-3), total phosphorus (mean 0.057 mg cm-3), total potassium (mean 0.083 mg cm-3), and available phosphorus (mean 18.6 μg cm-3). Modification by drainage, stock, and fires resulted in a decline of S. traversii and an increase of Gleichenia dicarpa fern cover, together with elevated peat nutrient levels and higher bulk density. Compared with peat dominated by Sporadanthus ferrugineus or Empodisma minus in relatively unmodified Waikato restiad bogs, Chatham Island peat under S. traversii has significantly higher total potassium, total nitrogen, available phosphorus, bulk density, and von Post decomposition indices, and significantly lower pH. Sporadanthus traversii and Empodisma minus have similar ecological roles in restiad bog development, occupying a relatively wide nutrient range, and regenerating readily from seed after fire. Despite differences in root morphology, S. traversii and E. minus are the major peat formers in raised restiad bogs on Chatham Island and in Waikato, respectively, and could be regarded as ecological equivalents

    Indirect effects of invasive species removal devastate World Heritage Island.

    Get PDF
    1. Owing to the detrimental impacts of invasive alien species, their control is often a priority for conservation management. Whereas the potential for unforeseen consequences of management is recognized, their associated complexity and costs are less widely appreciated. 2. We demonstrate that theoretically plausible trophic cascades associated with invasive species removal not only take place in reality, but can also result in rapid and drastic landscape-wide changes to ecosystems. 3. Using a combination of population data from of an invasive herbivore, plot-scale vegetation analyses, and satellite imagery, we show how a management intervention to eradicate a mesopredator has inadvertently and rapidly precipitated landscape-wide change on sub-Antarctic Macquarie Island. This happened despite the eradication being positioned within an integrated pest management framework. Following eradication of cats Felis catus in 2001, rabbit Oryctolagus cuniculus numbers increased substantially although a control action was in place (Myxoma virus), resulting in island-wideecosystem effects. 4.Synthesis and applications. Our results highlight an important lesson for conservation agencies working to eradicate invasive species globally; that is, risk assessment of management interventions must explicitly consider and plan for their indirect effects, or face substantial subsequent costs. On Macquarie Island, the cost of further conservation action will exceed AU$24 million.Centre of Excellence for Invasion Biolog

    Management implications of the Macquarie Island trophic cascade revisited: a reply to Dowding et al.

    Get PDF
    1. The management of non-indigenous species is not without its complications. In Bergstrom et al.'s (2009) study, we demonstrated that feral cats Felis catus on sub-Antarctic Macquarie Island were exerting top-downcontrol on the feral rabbit Oryctolagus cuniculus population, and that the eradication of the cats led to a substantial increase in rabbit numbers and an associated trophic cascade. 2. Dowding et al. (2009) claim our modelling was flawed for various reasons, but primarily that a reduction in the application of the rabbit control agent, Myxoma virus, coinciding with cat removal, was a major driver of rabbit population release. 3. We explore this proposition (as well as others) by examining rates of Myxoma viral release between 1991 and 2006 (with an attenuation factor for the years, 2003-2006) in association with presence/absence of cats against two estimates of rabbit population size. Myxoma viral release was a significant factor in the lower estimates of rabbit population, but the effect was small, and was not significant for higher rabbit population estimates. By contrast, the presence or absence of cats remained highly significant for both estimates. 4. Synthesis and applications. We re-affirm our position that top-down control of rabbit numbers by cats, prior to their eradication, was occurring on Macquarie Island. Nonetheless, we agree with Dowding et al. (2009) that systems with multiple invasive species represent complex situations that require careful scrutiny. Such scrutiny should occur in advance of, during, and following management interventions.Centre of Excellence for Invasion Biolog

    Manageable creativity

    Get PDF
    This article notes a perception in mainstream management theory and practice that creativity has shifted from being disruptive or destructive to 'manageable'. This concept of manageable creativity in business is reflected in a similar rhetoric in cultural policy, especially towards the creative industries. The article argues that the idea of 'manageable creativity' can be traced back to a 'heroic' and a 'structural' model of creativity. It is argued that the 'heroic' model of creativity is being subsumed within a 'structural' model which emphasises the systems and infrastructure around individual creativity rather than focusing on raw talent and pure content. Yet this structured approach carries problems of its own, in particular a tendency to overlook the unpredictability of creative processes, people and products. Ironically, it may be that some confusion in our policies towards creativity is inevitable, reflecting the paradoxes and transitions which characterise the creative process

    Macrofossils and pollen representing forests of the pre-Taupo volcanic eruption (c. 1850 yr BP) era at Pureora and Benneydale, central North Island, New Zealand.

    Get PDF
    Micro- and macrofossil data from the remains of forests overwhelmed and buried at Pureora and Benneydale during the Taupo eruption (c. 1850 conventional radiocarbon yr BP) were compared. Classification of relative abundance data separated the techniques, rather than the locations, because the two primary clusters comprised pollen and litter/wood. This indicates that the pollen:litter/wood within-site comparisons (Pureora and Benneydale are 20 km apart) are not reliable. Plant macrofossils represented mainly local vegetation, while pollen assemblages represented a combination of local and regional vegetation. However, using ranked abundance and presence/absence data, both macrofossils and pollen at Pureora and Benneydale indicated conifer/broadleaved forest, of similar forest type and species composition at each site. This suggests that the forests destroyed by the eruption were typical of mid-altitude west Taupo forests, and that either data set (pollen or macrofossils) would have been adequate for regional forest interpretation. The representation of c. 1850 yr BP pollen from the known buried forest taxa was generally consistent with trends determined by modern comparisons between pollen and their source vegetation, but with a few exceptions. A pollen profile from between the Mamaku Tephra (c. 7250 yr BP) and the Taupo Ignimbrite indicated that the Benneydale forest had been markedly different in species dominance compared with the forest that was destroyed during the Taupo eruption. These differences probably reflect changes in drainage, and improvements in climate and/or soil fertility over the middle Holocene
    corecore