821 research outputs found

    Efficacies of habitat management techniques in managing maize stem borers in Ethiopia

    Get PDF
    Habitat management techniques to control maize stem borers were tested in eastern (Melkassa and Mieso) and western (Sibu-Sire) Ethiopia. These techniques consisted of using mixed cropping of maize with haricot beans at different maize:bean ratios and a ‘‘push–pull’’ (PP) strategy utilizing Napier grass as a trap plant around maize plots as the ‘‘pull’’ and Desmodium in between maize rows as a deterrent or ‘‘push’’. In Melkassa, pest infestations were too low for the cropping system to significantly affect pests, plant damage and yields while in Mieso, where the pest densities were high, intercropping of maize with beans at ratios of 1:1 to 2:1 significantly decreased borer densities compared to pure maize stands. Chilo partellus (Swinhoe) and Cotesia flavipes (Cameron) were the major stem borer and parasitoid species, respectively, recorded both at Melkassa and Mieso. Borer parasitism was higher at Mieso than at Melkassa and it tended to increase with the increase of haricot bean ratio in the intercropping system. Land equivalent ratios of \u3e1 indicated higher land use efficiency in mixed compared to sole cropping, even if pest densities were low. Establishment of Desmodium and Napier grass in PP trials varied from site to site, and poor establishment was observed in plots with low soil pH. Where yields varied significantly, they were lower in the PP than the sole maize plots. Borer densities were low and mostly not affected by the cropping system. However, in the second season when borer density was relatively high, higher levels of infestation and leaf feeding scores were recorded in the control than push–pull plots

    Double Bright Band Observations with High-Resolution Vertically Pointing Radar, Lidar, and Profiles

    Get PDF
    On 11 May 2010, an elevated temperature inversion associated with an approaching warm front produced two melting layers simultaneously, which resulted in two distinct bright bands as viewed from the ER-2 Doppler radar system, a vertically pointing, coherent X band radar located in Greenbelt, MD. Due to the high temporal resolution of this radar system, an increase in altitude of the melting layer of approximately 1.2 km in the time span of 4 min was captured. The double bright band feature remained evident for approximately 17 min, until the lower atmosphere warmed enough to dissipate the lower melting layer. This case shows the relatively rapid evolution of freezing levels in response to an advancing warm front over a 2 h time period and the descent of an elevated warm air mass with time. Although observations of double bright bands are somewhat rare, the ability to identify this phenomenon is important for rainfall estimation from spaceborne sensors because algorithms employing the restriction of a radar bright band to a constant height, especially when sampling across frontal systems, will limit the ability to accurately estimate rainfall

    Solar photodegradation of irinotecan in water: optimization and robustness studies by experimental design

    Get PDF
    Irinotecan, a widely prescribed anticancer drug, is an emerging contaminant of concern that has been detected in various aquatic environments due to ineffective removal by traditional wastewater treatment systems. Solar photodegradation is a viable approach that can effectively eradicate the drug from aqueous systems. In this study, we used the design of experiment (DOE) approach to explore the robustness of irinotecan photodegradation under simulated solar irradiation. A full factorial design, including a star design, was applied to study the effects of three parameters: initial concentration of irinotecan (1.0-9.0 mg/L), pH (5.0-9.0), and irradiance (450-750 W/m(2)). A high-performance liquid chromatography coupled with a high-resolution mass spectrometry (HPLC-HRMS) system was used to determine irinotecan and identify transformation products. The photodegradation of irinotecan followed a pseudo-first order kinetics. In the best-fitted linear model determined by the stepwise model fitting approach, pH was found to have about 100-fold greater effect than either irinotecan concentration or solar irradiance. Under optimal conditions (irradiance of 750 W/m(2), 1.0 mg/L irinotecan concentration, and pH 9.0), more than 98% of irinotecan was degraded in 60 min. With respect to irradiance and irinotecan concentration, the degradation process was robust in the studied range, implying that it may be effectively applied in locations and/or seasons with solar irradiance as low as 450 W/m(2). However, pH needs to be strictly controlled and kept between 7.0 and 9.0 to maintain the degradation process robust. Considerations about the behavior of degradation products were also drawn

    Enhanced photocatalytic activity of CuWO4 doped TiO2 photocatalyst towards carbamazepine removal under UV irradiation

    Get PDF
    Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500◩C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0250.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly

    Agronomic characteristics of the spring forms of the wheat landraces (einkorn, emmer, spelt, intermediate bread wheat) grown in organic farming

    Get PDF
    Organic farmers look to the possibilities of growing neglected crops, such as the spring forms of hulled wheat – einkorn, emmer and spelt – for support in developing the organic farming system. In 2008, 169 landraces from the gene bank at the Crop Research Institute in Prague were tested on certifi ed organic plots. The experiment was aimed at fi nding suitable varieties for the organic farming system. In summary, our fi ndings show that einkorn (Triticum monococcum L.) and emmer wheat [Triticum dicoccum Schrank (Schuebl)] are resistant to powdery mildew and brown rust, spelt wheat (Triticum spelta L.) is less resistant to these two diseases, and the intermediate forms of bread wheat are very sensitive to such infestation. The varieties evaluated incline to lodging, as they have long and weak stems. Einkorn and emmer wheat have short and dense spikes and a low thousand grains weight, whereas spelt wheat has long and lax spikes. The level of the harvest index is low. Potentially useful varieties were found during the fi eld experiment and evaluation, and our future efforts will therefore focus on improving resistance to lodging and increasing the productivity of the spike

    Fleets: Scalable Services in a Factored Operating System

    Get PDF
    Current monolithic operating systems are designed for uniprocessor systems, and their architecture reflects this. The rise of multicore and cloud computing is drastically changing the tradeoffs in operating system design. The culture of scarce computational resources is being replaced with one of abundant cores, where spatial layout of processes supplants time multiplexing as the primary scheduling concern. Efforts to parallelize monolithic kernels have been difficult and only marginally successful, and new approaches are needed. This paper presents fleets, a novel way of constructing scalable OS services. With fleets, traditional OS services are factored out of the kernel and moved into user space, where they are further parallelized into a distributed set of concurrent, message-passing servers. We evaluate fleets within fos, a new factored operating system designed from the ground up with scalability as the first-order design constraint. This paper details the main design principles of fleets, and how the system architecture of fos enables their construction. We describe the design and implementation of three critical fleets (network stack, page allocation, and file system) and compare with Linux. These comparisons show that fos achieves superior performance and has better scalability than Linux for large multicores; at 32 cores, fos's page allocator performs 4.5 times better than Linux, and fos's network stack performs 2.5 times better. Additionally, we demonstrate how fleets can adapt to changing resource demand, and the importance of spatial scheduling for good performance in multicores

    Impact of Climate Change on the Hydrology of the Upper Awash River Basin, Ethiopia

    Get PDF
    This study investigated the impacts of climate change on the hydrology of the Upper Awash Basin, Ethiopia. A soil and water assessment tool (SWAT) model was calibrated and validated against observed streamflow using SWAT CUP. The Mann–Kendall trend test (MK) was used to assess climate trends. Meteorological drought (SPEI) and hydrological drought (SDI) were also investigated. Based on the ensemble mean of five global climate models (GCMs), projected increases in mean annual maximum temperature over the period 2015–2100 (compared with a 1983–2014 baseline) range from 1.16 to 1.73 °C, while increases in minimum temperature range between 0.79 and 2.53 °C. Increases in mean annual precipitation range from 1.8% at Addis Ababa to 45.5% over the Hombole area. High streamflow (Q5) declines at all stations except Ginchi. Low flows (Q90) also decline with Q90 equaling 0 m3 s−1 (i.e., 100% reduction) at some gauging stations (Akaki and Hombole) for individual GCMs. The SPEI confirmed a significant drought trend in the past, while the frequency and severity of drought will increase in the future. The basin experienced conditions that varied from modest dry periods to a very severe hydrological drought between 1986 and 2005. The projected SDI ranges from modestly dry to modestly wet conditions. Climate change in the basin would enhance seasonal variations in hydrological conditions. Both precipitation and streamflow will decline in the wet seasons and increase in the dry seasons. These changes are likely to have an impact on agricultural activities and other human demands for water resources throughout the basin and will require the implementation of appropriate mitigation measures
    • 

    corecore