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Abstract: This study investigated the impacts of climate change on the hydrology of the Upper
Awash Basin, Ethiopia. A soil and water assessment tool (SWAT) model was calibrated and validated
against observed streamflow using SWAT CUP. The Mann–Kendall trend test (MK) was used to assess
climate trends. Meteorological drought (SPEI) and hydrological drought (SDI) were also investigated.
Based on the ensemble mean of five global climate models (GCMs), projected increases in mean
annual maximum temperature over the period 2015–2100 (compared with a 1983–2014 baseline)
range from 1.16 to 1.73 ◦C, while increases in minimum temperature range between 0.79 and 2.53 ◦C.
Increases in mean annual precipitation range from 1.8% at Addis Ababa to 45.5% over the Hombole
area. High streamflow (Q5) declines at all stations except Ginchi. Low flows (Q90) also decline with
Q90 equaling 0 m3 s−1 (i.e., 100% reduction) at some gauging stations (Akaki and Hombole) for
individual GCMs. The SPEI confirmed a significant drought trend in the past, while the frequency
and severity of drought will increase in the future. The basin experienced conditions that varied from
modest dry periods to a very severe hydrological drought between 1986 and 2005. The projected SDI
ranges from modestly dry to modestly wet conditions. Climate change in the basin would enhance
seasonal variations in hydrological conditions. Both precipitation and streamflow will decline in
the wet seasons and increase in the dry seasons. These changes are likely to have an impact on
agricultural activities and other human demands for water resources throughout the basin and will
require the implementation of appropriate mitigation measures.

Keywords: Upper Awash Basin; climate change; SWAT; hydrological drought; SPEI; global cli-
mate models

1. Introduction

Scientific evidence is unequivocal that the earth’s climate is changing. Due to increas-
ing atmospheric concentrations of greenhouse gases, the average surface temperature of
the earth has increased by 1 ◦C with a likely range of 0.8 to 1.2 ◦C since the preindustrial
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period [1–3]. Projections from a wide range of climate model simulations suggest that the
average global temperature will increase between 1.1 and 5.4 ◦C by 2100 [3,4]. Projections
of increases in temperature over the African continent for the end of the 21st century are in
the range of 1.5 ◦C under a low-emission scenario (RCP 2.6) to 5.0 ◦C under a high-emission
scenario (RCP 8.5) [1,5–8].

Climate change will have significant impacts on the hydrological cycle [9,10], which
will include alterations to precipitation and evapotranspiration [4]. For example, a study
conducted using four Intergovernmental Panel on Climate Change (IPCC) emission sce-
narios (A1FI, A2, B1, and B2) and five GCMs (HadCM3, PCM, CGCM2, CSIRO2, and
ECHAM4) (2000–2100) reported that annual precipitation over the Horn of Africa (includ-
ing Ethiopia) could decrease by 25% [5]. Conversely, another study [11] suggested that
while long-term annual precipitation for Ethiopia may increase by around 9%, the largest
seasonal declines are projected for the driest quarter of the year (February–May), especially
in those regions that are already relatively dry.

Previous studies have suggested that climate change will significantly affect hydro-
logical systems and the water resources of Ethiopia [12–16]. For instance, a study in the
Gilgel Abay catchment, the source of Blue Nile in northern Ethiopia, indicated that a
modeled 2 ◦C temperature increase could lead to a decline in seasonal and annual runoff
of around 33% and 20%, respectively [17]. A study in Ethiopia’s Meki River catchment
also established that a 1.5 ◦C increase in temperature resulted in a 6% increase in potential
evapotranspiration and a 13% decrease in streamflow [13]. Based on the IPCC Special
Report on Emission Scenarios (SRES), the average annual inflow into Lake Ziway in the
Rift Valley Basin might be reduced by 19% and 27% for the A2a (heterogeneous future
world with regionally oriented economies) and B2a (regionally oriented but with a general
evolution towards environmental protection and social equity) scenarios, respectively [16].

The Awash River Basin, which has a total area of 110,000 km2 and a human population
of more than 10 million, is one of the most important basins in Ethiopia [18]. However,
increasing desertification and declines in river flow are among the problems the basin
and its inhabitants have experienced for the past three decades [18]. While the causes of
desertification and flow reduction are usually attributed to climate change, establishing
the influence of a changing climate on river flow reduction and the hydrology of the basin
requires more detailed studies. Furthermore, potential future climate change impacts
on hydrological conditions within the basin must be assessed to establish robust water
resource planning and management. This will help policymakers in the development
of appropriate water resource strategies that consider future climate change, and ensure
sustainable utilization of water and associated resources.

Previous investigations of the impacts of climate change on the Awash River Basin
have included hydrological modelling assessments employing earlier generation (SRES)
emission scenarios as simulated by one GCM [19] and the application of one or more
representative concentration pathway (RCP) scenarios provided by a number (two [20]
three [21]) of climate models. Results of these studies included projected declines in annual
rainfall of 9.9%, an increase in mean temperature of 0.9 ◦C, and a resultant decline in annual
streamflow of 11.5% under RCP4.5 in the 2080s [20]. Increases in water deficiency in all
seasons for parts of the basin were projected as a result of these increases in temperature and
declines in precipitation [21]. A further study extended these investigations by considering
not only the uncertainty associated with different emission (RCP) scenarios and GCMs but
also an alternative hydrological model structure [22]. It demonstrated that while GCM-
related uncertainty was dominant and was characterized by both increases and decreases in
discharge, model structural uncertainty can be considerable, especially for low flows [22].

The current study further deepens knowledge of climate change impacts on the hy-
drology of the upstream part of the Awash Basin by investigating both the recent historical
period (1983–2014) and the remainder of the current century (2015–2100). It includes trend
analysis of observed hydrometeorological data, hydrological modelling, and the evaluation
of meteorological and hydrological drought indices. The widely used hydrological model
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Soil and Water Assessment Tool (SWAT) developed by the US Department of Agriculture
Research Service [23] is used to simulate the hydrology of the basin. The model is calibrated
and validated using the SUFI2 algorithm in the SWAT CUP program [24]. Projections from
five GCMs for the representative concentration pathway (RCP) 4.5 emission scenarios were
selected based on data availability and coverage. These projections have been downscaled
and bias-corrected [25] using historical climate data for the period 1983–2014. Uncertainties
associated with GCMs and the downscaling techniques could result in significant differ-
ences in simulated hydrological conditions [26]. These uncertainties, particularly those
related to inherent errors of the models, can be reduced by using a multimodel ensemble
mean of the GCMs, and several studies have suggested using a multimodel ensemble to
minimize the biases and uncertainties of future climate simulations [26–28]. Accordingly,
this study uses both individual downscaled GCMs and the ensemble mean from all of
the GCMs. The downscaled climate data were then used as input to the SWAT model
to simulate impacts on river discharge. The novelty of the study lies in the combination
of trend assessment for both past decades and future projections, evaluation of climate
change impacts on hydrological extremes, and the implications for both meteorological
and hydrological drought.

2. Materials and Methods
2.1. Study Area

The Upper Awash River Basin is located in the North West Rift Valley of Ethiopia and
has an area of around 11,430 km2. The river rises on the high plateau near Ginchi town,
west of Addis Ababa, at an altitude of more than 3000 m. The total length of the main
course of the river is 336 km (Figure 1).
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The climate of the basin varies from humid subtropical to semiarid. Based on data
from meteorological stations for the period 1983 to 2014 obtained from the National Meteo-
rological Agency of Ethiopia, the mean maximum annual temperature ranges from 23.3 to
28.0 ◦C, while the mean annual minimum temperature ranges from 9.5 to 13.3 ◦C. The basin
receives most of its precipitation in two main seasons, spring and summer. Spring, which
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is locally named Bulg, is a short rainy season from March to May. Summer, known locally
as Kiremt, is the main rain and crop-growing season and extends from June to September.
Hombole and Tulu Bolo receive over 60% of their annual total rainfall in summer and 20%
in spring. The other four stations receive more than 40% in summer and 30% in spring.
The mean annual rainfall ranges from 600 mm at the Hombole meteorological station to
1094 mm at the Ginchi station.

2.2. Data and Methods
2.2.1. Downscaling Climate Variables and Simulation Performance

This study used downscaled outputs from five GCMs (Table 1) for the RCP4.5 emission
scenario. This is an intermediate emission scenario of long-term global emissions of
greenhouse gases, short-lived species, and land use/land cover, which stabilizes radiative
forcing at 4.5 W m−2 in the year 2100 [29]. RCP4.5 represents generally good agreement
with the latest policies for lower greenhouse gas emissions by the global community [30].

Table 1. GCMs used in the current study.

Model Name Institution and Country Resolution
(Degree)

CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 1.9 × 1.9
CNRM-CM5 Centre National de Recherches Météorologiques, France 1.4 × 1.4
GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.0 × 2.5
GISS-E2-R NASA/GISS (Goddard Institute for Space Studies), USA 2.0 × 2.5

MPI-ESM-LR Max Planck Institute, Germany 1.9 × 1.9

The GCMs provide projections of future climate at resolutions of hundreds of kilo-
meters and must be resampled at a higher spatial resolution to be used in studies of the
impact of change, including those that focus on hydrological impacts using catchment
modelling [31]. Therefore, the GCM projections were downscaled using a statistical down-
scaling model (SDSM) to project future temperature and precipitation across the Upper
Awash River Basin.

Before downscaling the climate variables for each station, the simulation performance
of each GCM was assessed to validate their accuracy in representing observed climate. For
this purpose, we used observed and historical GCM daily data for the period 1983–2005.
The mean relative error (MRE) (Equation (1)) was used to define the model simulation
error, the correlation coefficient (CORR) (Equation (2)) identified the similarity or otherwise
of observed and simulated climate data, and the Nash–Sutcliffe efficiency coefficient (NSE)
(Equation (3)) was further used to evaluate the GCMs’ capability in simulating climate vari-
ables. The smaller the value of the MRE is, the higher the GCM simulation capability is [32],
while the closer the NSE value is to 1, the better is the model simulation performance [32].

MRE =
P − O

O
∗ 100 (1)

CORR =
∑N

i=1
(

Pi − P
)(

Oi − O
)

(∑N
i=1
(

Pi − P
)2
)

0.5
((∑N

i=1
(
Oi − O

)2
)

0.5 (2)

NSE = 1 − (∑N
i=1(Pi − Oi)

2

(∑N
i=1
(
Oi − O

)2 (3)

where Pi and Oi are the values at the ith time step (daily) in the downscaled GCM simulation
and observational time series, respectively, P and O are the mean value of the downscaled
GCM simulation and observational sequence, and N is the total sample number [32].

An SDSM is an established decision support tool for assessing local climate change
impacts using a robust statistical downscaling technique (see [33] for a detailed review of
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its conceptual basis). It is computationally inexpensive and thus can be easily applied to
outputs from multiple GCM experiments to provide specific local climate information [34].
The tool is designed to identify local or regional climate information by determining a
statistical model that relates large-scale climate variables (the predictors) to regional or
local variables (the predictand) [31].

An SDSM was used to define statistical models using daily observed data (i.e., local
climate data for a specific location for the predictand and larger-scale National Centers
for Environmental Prediction (NCEP) data for the predictors). These models are then
used with GCM-derived predictors to obtain daily weather data at a specific site for a
future period [34]. This study used data from the six meteorological stations located
within the basin (Ginchi, Alem Tena, Addis Ababa, Hombole, Mojo, and Tulu Bolo). The
observed data covered the period 1983–2014, while the GCM simulated historical dataset
covered the period 1983–2005 and projected data for the period 2006–2100. The GCM data
(precipitation and maximum and minimum temperature) were downscaled to the station
resolution. During downscaling, the linear scaling bias correction method [24], refs. [34–36]
within an SDSM was employed to correct the GCM simulation systematic or random errors.

2.2.2. Climate Change and Impact Assessment

The Mann–Kendall trend test (MK) was employed to assess the climate change trends
for both the historical period and future projections. The trends for precipitation, as well as
the minimum and maximum temperature, were investigated for all stations. Furthermore,
the Standardized Precipitation Evapotranspiration Index (SPEI) [37] was calculated at a
12-month temporal resolution, while the Streamflow Drought Index (SDI) [38] was evalu-
ated to assess the impact of climate change on meteorological and hydrological drought.
The SPEI is a new drought index used to detect the influence of global warming on me-
teorological drought, whereas the SDI is used to describe the severity of hydrological
drought [39]. Hydrological drought refers to a significant reduction of water in the hydro-
logical system, low streamflow in rivers, and abnormally low levels in lakes, reservoirs,
and groundwater [38]. The trends for the SPEI and SDI were investigated for both the
historical period and future projections at all stations. The procedure and description for
the three indices are described as follows:

Mann–Kendall Trend Test (MK)

The MK is a nonparametric test that is commonly used to detect monotonically (in-
creasing or decreasing) trends in climate and hydrological time series data [40]. The
nonparametric MK test is suitable for trend detection because it is less affected by out-
liers in the dataset [41]. In addition, the MK test enables the identification of whether an
established trend is statistically significant. The MK test statistic “S” is computed as follows:

S = ∑n−1
i=1 ∑n

j=i+1 Sgn
(
xj − xi

)
(4)

where xi and xj denote sequential data values of the time series of j and i (j > i), and n is the
number of days in the data series. The sign function can be calculated as:

Sgn
(
Xj − Xi

)
=


1 i f

(
xj − xi

)
> 0

0 i f
(
xj − xi

)
= 0

−1 i f
(
xj − xi

)
< 0

(5)

When the sample size is greater than or equal to 10 (n ≥ 10), the S statistic is approxi-
mately a standard normal distribution with the mean equal to zero; then the variance is
calculated with the following equation:

Var(S) =
n(n − 1)(2n + 5)− ∑m

i=1 ti(ti − 1)(2ti + 5)
18

(6)
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where n is the number of data points, m is the number of tied groups (sample data with the
same value, where there is zero variance between the compared values), and ti is the number
of data values in the mth group. The Z-test is calculated with the following equation:

Z =


s−1

σ i f s > 1
0 i f s = 0

s+1
σ i f s < 0

(7)

where s denotes the variance and σ denotes the square root of the variance. Positive Z
values indicate an increasing trend, while a negative value indicates a decreasing trend.
The trend magnitude was calculated using Sen’s slope (Si):

(Si) =

(
Xj − Xi

)
j − i

, f or i = 1, 2 . . . , N (8)

where xj and xi denote the data value at time j and i (j > i), respectively. The median of
these N values of Si is denoted as Sen’s estimator of the slope, which is expressed as:

Qi =

{ S(N+1)
2 i f N is odd

S(( N
2 )+Q(N+2)/2)

2 i f N is even
(9)

The sign of Qi shows whether the trend is increasing or decreasing. In this study, two
specific significance levels, α = 0.05 and α = 0.01, are used (the corresponding threshold
values of the MK value are ±1.96 and ±2.58, respectively). When the MK value is greater
than 1.96 or less than −1.96, the changing trend is significant. When the MK value is greater
than 2.58 or less than −2.58, the changing trend is extremely significant.

Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI uses the monthly difference between precipitation and potential evapotran-
spiration (PET), computed using the Penman–Monteith equation [42]. The water balance is
computed as:

Di = Pi − PETi (10)

where P and PET denote precipitation and potential evapotranspiration for the ith months,
respectively. Di is a simple measure of the water surplus or deficit for the analyzed month.
As regards the Standard Precipitation Index (SPI) [43], the probability distribution of the
cumulative Di series was aggregated at different time scales. The log-logistic distribution
was selected for standardizing the D series. The probability density function of a three-
parameter log-logistic distributed variable is expressed as:

f (D) =
β

α
(

D − γ

α
)

β−α
(

1 + (
D − γ

α
)

β
)−2

(11)

where α, β, and γ are scale, shape, and origin parameters, respectively, for D values in
the range (γ > D < ∞). The parameters of the log-logistic distribution can be obtained
following [44]. The probability distribution function for standardizing the D series for all
time scales, according to the log-logistic distribution, is determined as:

F(D) = (1 + (
α

D − γ
)

β
)
−1

(12)

With F(x), the SPEI can be obtained as the standardized values of F(x):

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (13)
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where W =
√
− ln(P) for P ≤ 0.5.

Where P is the probability of exceeding a determined D value, P = 1 − F(D). If
P > 0.5, then P is replaced by 1 − P, and the sign of the resultant SPEI is reversed. The
constants are C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and
d3 = 0.001308 [37]. The average value of the SPEI is 0, and the standard deviation is 1. The
SPEI is a standardized variable, and it can therefore be compared with other SPEI values
over time and space [37]. The SPEI classification is described in Table 2 below.

Table 2. Definition of the SPEI drought index.

SPEI Value Classification

≥2 Extremely wet
1.5–2.0 Very wet
1.0–1.5 Modestly wet

(−1)–1.0 Near normal
(−1.0)–(−1.5) Modestly dry
(−1.5)–(−2.0) Severely dry

≤(−2.0) Extremely dry

Streamflow Drought Index (SDI)

The SDI was calculated for the six gauging stations for both the historical period and
the future projections. The historical SDI was calculated based on observed streamflow data
and for future projections simulated by the SWAT model (see below). The SDI is based on
the time series of monthly streamflow volumes (Qi,j), where i denotes the hydrological year
and j is the month within that hydrological year (from October to September). Streamflow
volume is calculated using the following equation:

Vi,k =
3k

∑
j=1

Qi,j i = 1, 2, 3 . . . , 12 j = 1, 2 . . . 12 k = 1, 2, 3, 4 (14)

where Vi,k is the cumulative streamflow volume for the i-th hydrological year and the
k-th reference period, k = 1 for October–December, k = 2 for October–March, k = 3 for
October–June, and k = 4 for October–September. The SDI is defined based on cumulative
streamflow volumes Vi,k for each reference period k of the i-th hydrological year as follows:

SDIi,k =
Vi,k − Vk

Sk
i = 1, 2 k = 1, 2, 3, 4 (15)

where Vk and Sk are, respectively, the mean and the standard deviation of cumulative
streamflow volumes of the reference period k as these are estimated over a long period.
Positive SDI values reflect wet conditions, while negative values indicate a hydrological
drought. States of hydrological drought are defined by the SDI in an identical way to those
used in the meteorological drought indices, such as the SPI [39].

2.3. Hydrological Modeling
2.3.1. Soil and Water Assessment Tool (SWAT)

SWAT is a basin-scale, continuous-time model that operates at a daily time step and is
designed to simulate the impact of management on water, sediment, and agricultural chem-
ical yields in river catchments [45]. The hydrological component of the model simulates
surface runoff, potential evapotranspiration, percolation, lateral subsurface flow, groundwa-
ter flow to streams from shallow aquifers, snowmelt, transmission losses from streams, and
water storage and losses from ponds [23]. The model includes climate, nutrient cycling, soil
temperature, sediment movement, crop growth, agricultural management, and pesticide
dynamics [46], although most of these elements were not used in the current study given
its focus on streamflow. The model is widely used (e.g., [47–51]), and previous applications
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include simulating the impacts of climate change and land management practices on water,
sediment, and agricultural yields in large and complex watersheds with varying soils, land
uses, and management conditions over long periods [52].

The input data for the SWAT model include climate time series and the location of
meteorological stations, a digital elevation model (DEM), land use and soil distributions,
and hydraulic characteristics. The data type used in the development of the SWAT model
of the Upper Awash Basin and their sources are summarized in Table 3. SWAT divides a
river basin into multiple subcatchments, which are then further subdivided into hydrologic
response units (HRUs), which consist of homogeneous land use, management, and soil
characteristics. In the case of Upper Awash, the model comprised a total of 7 sub-catchments
and 93 HRUs.

Table 3. Data type and sources used in SWAT model development.

Data Type Resolution Source

DEM 30 m USGS; https://earthexplorer.usgs.gov/ (accessed on 20
October 2020).

Soil 250 m

ISRIC World Soil Information, Africa Soil Profiles
Database;
https://www.isric.org/projects/africa-soilgrids-soil-
nutrient-maps-sub-saharan-africa$-$250-m-resolution
(accessed on 10 October 2019).

Land use 20 m

European Space Agency “Prototype land cover map of
Africa v1.0 based on 1 year of Sentinel−2A observations
from December 2015 to December 2016”;
http://2016africalandcover20m.esrin.esa.int/download.
php?token=ce02f3bc0602d8dc365e7349065faed2
(accessed on 2 October 2017).

Climate
Observed National Meteorological Agency of Ethiopia

Simulated (GCM)
IPCC Data Distribution center;
http://www.ipcc-data.org/sim/gcm_monthly/AR5
/Reference-Archive.html (accessed on 4 July 2017).

Discharge Observed
Ministry of Irrigation, Energy, and Water Resource of
Ethiopia and Global Runoff Data Centre
http://grdc.bafg.de (accessed on 10 July 2017).

The model uses daily precipitation, maximum and minimum temperature, solar
radiation, relative humidity, and wind speed from historical (observed) and downscaled
GCM data from the station nearest to the centroid of each subcatchment. The surface
runoff, potential evapotranspiration, percolation, lateral subsurface flow, groundwater
flow to streams from shallow aquifers, and soil water were simulated for each HRU and
then aggregated for the subcatchment using a weighted average [53]. These simulated
variables for each subcatchment were then routed through the river system. Channel
routing was simulated using the variable storage method. Surface runoff was simulated
using a modified SCS curve number method, which is a function of local land use, soil type,
and antecedent soil moisture condition [23,53].

SWAT calculates evaporation from soil and plants separately. The model simulates
potential soil water evaporation as a function of PET and the leaf area index, which is the
area of plant leaves relative to the soil surface area. Actual soil evaporation is estimated
by using exponential functions of soil depth and water content. Plant water evaporation
is simulated as a linear function of PET, leaf area index, and root depth. We employed
Hargreaves methods to estimate PET [47].

2.3.2. Model Calibration and Validation

Calibration and validation of the SWAT hydrological model were undertaken using
the sequential uncertainty fitting ver-2 (SUFI-2) algorithm in SWAT CUP [54]. In SUFI-2,
all sources of uncertainties, such as uncertainty in driving variables, conceptual model,

https://earthexplorer.usgs.gov/
https://www.isric.org/projects/africa-soilgrids-soil-nutrient-maps-sub-saharan-africa$-$250-m-resolution
https://www.isric.org/projects/africa-soilgrids-soil-nutrient-maps-sub-saharan-africa$-$250-m-resolution
http://2016africalandcover20m.esrin.esa.int/download.php?token=ce02f3bc0602d8dc365e7349065faed2
http://2016africalandcover20m.esrin.esa.int/download.php?token=ce02f3bc0602d8dc365e7349065faed2
http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html
http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html
http://grdc.bafg.de
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parameters, and measured data, are mapped to a set of parameter ranges [54]. The un-
certainty is quantified at the 2.5% and 97.5% levels of the cumulative distribution of an
output variable obtained through Latin hypercube sampling, and it is referred to as the
95% prediction uncertainty (95PPU) [55,56]. In SUFI-2, two indices are used to quantify
the strength of the calibration and validation [47]. These are referred to as the “P-factor”,
which is the fraction of measured data bracketed by the 95PPU, and the “R-factor”, defined
as the ratio of the average width of the 95PPU band and the standard deviation of the
measured variable. The P-factor varies from 0% to 100%, while the R-factor ranges between
0 and infinity. A P-factor of 1 and an R-factor of 0 indicate perfect model performance
considering the uncertainty [57]. Furthermore, the algorithm allows the use of 10 different
objective functions, including r2, Nash–Sutcliffe (NS), and mean square error (MSE). This
study employed the P-factor and R-factor as well as the r2 and NS objective functions.

A sensitivity analysis was undertaken using 16 SWAT input parameters with initial
values collected from the literature [5,55,57,58]. The main purpose of the sensitivity analysis
was to identify the key parameters that affect model performance during calibration and
validation. We used similar initial parameter ranges for the six gauging stations as SWAT
CUP allows for the calibration and validation of all stations simultaneously. SUFI-2 allows
two types of sensitivity analysis: global sensitivity and one-at-a-time sensitivity. In a global
sensitivity analysis, parameter sensitivities are determined using a multiple regression
approach, which regresses the Latin hypercube-generated parameters against the objective
function values. The t-stat values were used to assess the sensitivity of parameters [57] with
larger absolute t-stat values indicating greater sensitivity. P-values are used to determine
the significance of the sensitivity where the parameter becomes significant if the P-values
are close to 0 [57]. The local sensitivity analysis determines the sensitivity of a variable to
the changes in a single parameter if all other parameters are kept constant at their original
value [54].

The sensitivity analysis results showed that runoff curve number was the most sen-
sitive parameter, followed by average slope length, groundwater delay, and Manning’s
(roughness) value for the main channel, respectively (Table 4). After sensitivity analysis,
calibration and validation were undertaken for each gauging station based on recorded
monthly streamflow data. Accordingly, we used recorded streamflow data from 1993 to
2010 for Ginchi, 1985 to 2009 for Holeta, 1985 to 2004 for Asigori, 1990 to 2004 for Akaki,
1985 to 2008 for Melka Kuntrie, and 1983 to 2014 for Hombole. Two-thirds of the observed
data were used for calibration, and the remaining one-third was for validation. During the
calibration and validation process, the relative change method was used to parameterize,
or regionalize, parameter values. This is more suitable than the alternative replacement
method for those parameters that exhibit spatial variations, such as hydraulic conductivity
and curve number.

Table 4. Sensitive parameters used for calibration and validation.

Parameter Name Definition of Parameters Mini
Mum

Maxi
Mum

Fitted
Value

1 R__CN2.mgt Runoff curve number −0.2 0.2 −0.08671
2 R__SLSUBBSN.hru Average slope length −0.8 0.8 −0.66387
3 R__GW_DELAY.gw Groundwater delay (days) −0.2 0.2 0.149467
4 R__CH_N2.rte Manning’s “n” value for the main channel −0.2 0.2 0.107811
5 R__ESCO.hru Soil evaporation compensation factor −0.7 0.7 −0.69561
6 R__RCHRG_DP.gw Deep aquifer percolation fraction −0.1 0.1 −0.0863
7 R__SOL_K(..).sol Saturated hydraulic conductivity −0.1 0.1 −0.10273
8 R__GW_REVAP.gw Groundwater “revap” coefficient −2 2 −1.06996
9 R__ALPHA_BF.gw Baseflow alpha factor −2 2 −1.28959
10 R__OV_N.hru Manning’s “n” value for overland flow −0.3 0.3 −0.20556
11 R__SOL_BD(..).sol Moist bulk density 0 0.2 0.143441

12 R__REVAPMN.gw Threshold depth of water in the shallow aquifer
for “revap” to occur (mm) 0 0.2 0.165369

13 R__SOL_AWC (..).sol Available water capacity of the soil layer 0 0.9 0.930784
14 R__ALPHA_BNK.rte Baseflow alpha factor for bank storage −0.3 0.3 −0.18111
15 R__HRU_SLP.hru Average slope steepness 0 1 1.012475

16 R__GWQMN.gw Threshold depth of water in the shallow aquifer
required for return flow to occur (mm) −0.2 0.2 −0.2127
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3. Results
3.1. GCM Simulation Performance

The simulation performance assessment showed that all of the selected GCMs have
good simulation capacity over the Upper Awash River Basin. The MREs for GFDLE-CM3,
GISS-ET-R, and MPI-ESM-LR are all less than 5% for precipitation and less than 0.55 for
temperature. The other GCMs have values of MRE in the range of 7.8% to 42%. The
CORR and NSE values for precipitation are all greater than 0.89 and 0.71, respectively. The
values of these statistics for air temperatures are similarly high and indicate superior GCM
performance than for precipitation [32]; they range between 0.94 and 0.99, and between
0.83 and 0.99, respectively (Appendix A).

3.2. Hydrological Model Calibration and Validation

Calibration and validation of the SWAT model were performed against recorded
streamflow data at the six gauging stations (Figure 2). Simulation performance for each
gauging station and both the calibration and validation periods is described in Table 5.
Performance was satisfactory at the Asigori, Melka Kuntrie, Hombole, and Holeta gauging
stations. Performance at Ginchi was relatively poor for the calibration period but good
for the validation period. In contrast, the model performed poorly for the Akaki gauging
station in both the calibration and validation periods as indicated by the lower R2 and NS
values relative to the other gauging stations.

Table 5. SWAT model calibration and validation performance.

Stations Calibration Validation

P-Factor R-Factor R2 NS PBIAS p-Factor r-Factor R2 NS PBIAS

Ginchi 0.25 0.93 0.40 0.40 −17.90 0.29 0.87 0.51 0.50 −10.60
Asigori 0.87 1.05 0.62 0.62 −3.90 0.58 1.31 0.66 0.64 −27.60
Holeta 0.78 1.15 0.60 0.59 −4.90 0.76 1.16 0.58 0.58 3.30
Akaki 0.73 0.52 0.43 0.40 21.50 0.59 0.54 0.49 0.49 −4.00
Kuntrie 0.70 0.79 0.83 0.81 −12.90 0.75 1.01 0.83 0.81 15.30
Hombole 0.72 0.85 0.69 0.69 −4.90 0.73 0.90 0.78 0.78 −7.00

3.3. Changes in Air Temperature

The mean monthly minimum temperature (Tmin) and maximum temperature (Tmax)
for the baseline and each GCM, as well as the ensemble mean based on all of the GCMs,
are presented in Figures 3 and 4. Across the basin, Tmin for the baseline period ranges
between 5.67 and 15.24 ◦C, while Tmax ranges from 16.70 to 31.06 ◦C. The mean monthly
Tmin for the ensemble means ranges between 7.25 and 16.48 ◦C, while the corresponding
ensemble mean Tmax ranges from 19.10 to 32.65 ◦C.

The mean annual change in Tmax (◦C) and Tmin (◦C) for the different GCMs relative
to the baseline are presented in Table 6. The baseline (1983–2014) and projected (2015–2100)
rate of change of annual Tmax and Tmin, which is defined by Sen’s slope in the MK test,
are also presented in Table 7. Both mean annual Tmax and Tmin are projected to increase
relative to the baseline at all stations for all five GCMs. Based on the ensemble mean of the
GCMs, the change in Tmax across the basin ranges from 1.16 to 1.73 ◦C, while the Tmin
changes range from 0.79 to 2.53 ◦C. However, individual GCMs project increases in Tmax
and Tmin of up to 1.9 and 3.47 ◦C, respectively (Table 6).
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Figure 2. Calibration and validation result for streamflow and each gauging station for the calibration
and validation periods.
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Figure 3. Mean monthly minimum temperature for baseline and different GCMs.
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Figure 4. Monthly mean maximum temperature for baseline and GCMs.
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Table 6. Mean annual Tmax and Tmin for the baseline and change (◦C) for different GCMs and the
ensemble mean of the five GCMs.

Ginchi Addis
Ababa

Alem
Tena Hombole Mojo Tulu Bolo

Tmax
(Change in ◦C)

Baseline
(1983–2014) 23.12 23.49 28.29 26.43 28.68 24.78
Ensemble mean 1.73 1.71 1.16 1.66 1.41 1.36
CMCC CMS 1.57 1.54 1.03 1.53 1.24 1.2
CNRM CM5 1.29 1.26 0.6 1.09 0.96 0.92
GFDL CM3 1.87 1.88 1.37 1.86 1.58 1.51
GISS E2 R 1.51 1.58 1 1.5 1.21 1.21
MPI ESM LR 1.9 1.82 1.31 1.8 1.52 1.52

Tmin
(Change in ◦C)

Baseline
(1983–2014) 9.31 9.82 12.96 7.43 11.69 9.39
Ensemble mean 1.2 0.79 1.16 2.53 1.36 1.05
CMCC CMS 1.43 0.99 1.41 3.08 1.67 1.25
CNRM CM5 1.14 0.63 1.03 2.71 1.31 0.96
GFDL CM3 1.88 1.37 1.81 3.47 2.07 1.73
GISS E2 R 1.37 0.85 1.27 2.94 1.53 1.18
MPI ESM LR 1.37 0.89 1.31 2.98 1.57 1.2

Table 7. Annual maximum and minimum temperature trend for the baseline period and projected by
each of the GCMs at different stations (S is Sen’s slope (◦C) and Z is the Z-test).

Variable GCMs Addis
Ababa Alem Tena Ginchi Hombole Mojo Tulu

Bolo

S Z S Z S Z S Z S Z S Z

Tmax Baseline
(1983–2014) 0.02 2.81 0.03 3.61 0.08 1.82 0.06 2.50 0.08 4.32 0.04 1.17
Ensemble mean 0.02 6.15 0.02 6.17 0.02 6.32 0.02 6.18 0.02 6.16 0.02 6.38
CMCC CMS 0.03 8.78 0.03 8.80 0.03 8.87 0.03 8.79 0.03 8.78 0.03 8.87
CNRM CM5 0.02 5.75 0.02 5.77 0.02 6.83 0.02 5.77 0.02 5.75 0.02 6.82
GFDL CM3 0.01 4.14 0.01 4.21 0.01 3.88 0.01 4.22 0.01 4.17 0.01 4.16
GISS E2 R 0.01 4.99 0.01 4.95 0.01 4.96 0.01 5.01 0.01 4.99 0.01 4.95
MPI ESM LR 0.03 7.11 0.03 7.13 0.03 7.08 0.03 7.12 0.03 7.10 0.03 7.09

Tmin Baseline
(1983–2014) 0.08 5.56 0.05 1.38 0.03 2.55 0.02 1.46 0.02 7.30 0.02 1.08
Ensemble mean 0.03 8.60 0.02 8.17 0.03 8.39 0.02 8.17 0.02 8.17 0.02 8.25
CMCC CMS 0.03 8.92 0.03 8.93 0.03 9.07 0.03 8.93 0.03 8.92 0.03 9.06
CNRM CM5 0.02 9.14 0.02 9.15 0.02 9.46 0.02 9.15 0.02 9.14 0.02 9.48
GFDL CM3 0.04 8.83 0.04 8.83 0.04 8.82 0.04 8.83 0.04 8.83 0.01 6.61
GISS E2 R 0.04 8.83 0.01 6.65 0.02 7.30 0.01 6.65 0.01 6.66 0.04 8.83
MPI ESM LR 0.02 7.28 0.02 7.29 0.02 7.30 0.02 7.29 0.02 7.28 0.02 7.28

Based on the MK trend tests, an extremely significant (α ≤ 0.001) increasing trend is
indicated for both baseline and projected annual Tmax and Tmin (Table 7). The rate of
change of temperature for the baseline period ranges from 0.2 to 0.8 ◦C per decade for both
Tmax and Tmin. Projected annual rates of temperature change, however, vary between
GCMs. The rate of change of mean annual Tmax is 0.3 ◦C per decade for CMCC CMS and
MPI ESM LR, 0.2 ◦C per decade for NRM CM5, and 0.1 ◦C per decade for the GISS E2 R
and GISS E2 R GCMs at all stations. The rate of change for mean annual Tmin, on the other
hand, is 0.3 ◦C per decade for CMCC CMS, 0.2 ◦C per decade for CNRM CM5 and MPI
ESM LR, and 0.4 ◦C per decade for GFDL CM3 and GISS E2 R, again at all stations.

3.4. Changes in Precipitation

Mean annual baseline precipitation for each station and changes (percent) relative
to this baseline for the different GCMs and the ensemble mean are presented in Table 8.
Increases in mean annual precipitation are indicated in most cases, although GISS E2 R
projects decline at five of the six stations (the exception being Hombole). The largest overall
increase in mean annual precipitation is projected for Hombole (a 60.5% increase for MPI
ESM LR), while the largest decline is at Addis Ababa (14.9%, GISS E2 R).
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Table 8. Mean annual precipitation (mm) and change in percent for the different GCMs (the shaded
cells are negative change compared with the baseline).

GCMs Ginchi Addis
Ababa Alem Tena Hombole Mojo Tulu Bolo

PCP
(change in

percent)

Baseline 1094.29 1029.61 782.18 600.58 885.88 1024.78
Ensemble
Mean 6.91 1.79 3.20 45.50 4.76 9.43
CMCC
CMS 5.51 0.08 2.09 46.28 2.97 11.25
CNRM
CM5 11.57 11.54 9.34 56.61 13.37 15.45
GFDL CM3 15.63 6.47 10.00 48.17 10.77 9.20
GISS E2 R −10.79 −14.91 −13.35 24.65 −11.39 −9.49
MPI ESM
LR 19.46 11.98 14.42 60.48 14.54 25.33

Table 9. Annual and seasonal precipitation trends for the baseline (observed) period and projected
future period for different GCMs. Minus sign(−) indicate a negative trend. S is Sen’s slope (mm) and
Z the Z-test.

Stations Seasons
Baseline CMCC

CMS
CNRM

CM5
GFDL
CM3

GISS
E2 R

MPI
ESM LR

Ensemble
Mean

S Z S Z S Z S Z S Z S Z S Z

Ginchi

Spr −1.03 −1.49 −0.02 −0.16 −0.11 −0.92 0.16 0.93 −0.16 −1.45 −0.3 −1.93 −0.12 −2.17
Sum −0.38 −0.75 0.18 1.75 0.13 1.34 −0.03 −0.12 −0.23 −0.69 0.30 3.33 −0.05 −0.48
Aut −0.79 −1.69 −0.01 −0.15 −0.02 −0.19 −0.02 −0.19 0.25 2.11 0.25 2.60 0.02 0.46
Win −0.61 −1.53 −0.01 −0.05 0.04 0.69 0.38 3.63 0.02 0.53 −0.03 −0.63 0.02 0.46
Ann −0.86 −2.61 0.02 0.5 −0.02 −0.25 0.18 1.94 −0.01 −0.08 0.06 0.81 −0.01 −0.01

Addis
Ababa

Spr −0.88 −1.51 0.06 0.44 −0.15 −0.63 0.13 0.84 −0.15 −1.57 −0.29 −1.65 −0.13 −1.81
Sum 0.11 0.29 0.10 0.51 0.15 1.71 −0.04 −0.14 −0.22 −0.65 0.21 1.45 −0.1 −1.12
Aut −0.32 −0.96 0.08 1.06 0.05 0.41 0.01 0.13 0.21 2.21 0.11 0.75 0.05 0.92
Win −0.11 −0.72 0.01 0.20 −0.01 −0.09 0.30 3.85 0.02 0.66 −0.01 −0.55 0.02 0.62
Ann −0.39 −1.46 0.05 0.93 0.01 0.11 0.16 2.19 −0.03 −0.26 −0.03 −0.37 −0.14 −0.33

Alem
Tena

Spr −0.69 −0.88 0.03 0.29 −0.02 −0.16 0.08 0.80 −0.13 −1.69 −0.27 −1.48 −0.09 −1.79
Sum −0.23 −0.34 0.09 0.66 0.05 0.86 −0.01 −0.09 −0.16 −0.66 0.17 1.67 −0.08 −1.04
Aut 0.27 0.78 0.07 1.03 0.02 0.37 0.02 0.37 0.16 2.17 0.06 0.74 0.02 0.75
Win −0.04 −0.52 0.01 0.26 0.00 0.03 0.31 3.85 0.01 0.59 0.00 −0.37 0.03 1.10
Ann −0.13 −0.54 0.05 1.13 0.01 0.16 0.13 2.32 −0.03 −0.33 −0.02 −0.23 −0.04 −0.08

Hombole

Spr −0.34 −1.01 0.03 0.36 0.00 −0.05 0.16 1.00 −0.10 −1.50 −0.25 −1.53 −0.07 −1.58
Sum −2.24 −1.25 0.11 0.54 0.06 0.9 0.00 0.03 −0.21 −0.71 0.20 1.64 −0.1 −0.93
Aut 0.00 −0.05 0.05 1.07 0.02 0.5 0.02 0.50 0.13 2.21 0.10 0.93 0.02 0.86
Win 0.00 −1.60 0.01 0.15 −0.04 −0.5 0.30 3.91 0.03 1.10 −0.01 −0.72 0.01 0.25
Ann −0.83 −1.45 0.04 0.87 0.00 0.03 0.17 2.69 −0.03 −0.35 −0.02 −0.34 −0.07 −0.16

Mojo

Spr 0.75 0.92 0.02 0.29 −0.10 −0.63 0.11 0.70 −0.09 −1.41 −0.21 −1.62 −0.08 −1.73
Sum 1.49 1.51 0.13 0.75 0.17 2.02 −0.02 −0.12 −0.23 −0.66 0.22 1.66 −0.08 −0.78
Aut 0.52 1.18 0.07 1.06 0.04 0.31 0.00 −0.07 0.17 2.18 0.11 0.85 0.03 0.92
Win −0.06 −0.70 0.01 0.33 0.00 −0.05 0.23 3.94 0.01 0.67 0.00 −0.17 0.02 1.03
Ann 0.56 1.66 0.05 1.09 0.03 0.56 0.12 1.84 −0.02 −0.31 0.01 0.18 −0.08 −0.18

Tulu
Bolo

Spr 0.00 0.02 −0.01 −0.12 −0.11 −1.11 0.31 1.62 −0.12 −1.45 −0.2 −1.91 −0.06 −1.12
Sum 0.76 1.01 0.21 1.54 0.15 1.31 −0.08 −0.24 −0.29 −0.67 0.38 3.31 −0.02 −0.27
Aut 0.7 1.36 0.00 −0.1 −0.04 −0.63 −0.04 −0.63 0.12 1.89 0.24 2.58 0.03 0.90
Win −0.13 −0.91 0.00 0.07 0.02 0.71 0.22 3.83 0.01 0.44 −0.01 −0.49 0.01 0.63
Ann 0.35 0.67 0.04 1.29 0.00 −0.03 0.17 2.48 −0.03 −0.25 0.11 2.55 0.24 0.54
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Figure 5. Mean monthly precipitation for the baseline and each GCM for six meteorological stations.

3.5. Changes in Streamflow

Change in streamflow extremes: Table 10 presents mean discharge (Qmean) (m3 s−1),
discharges equaled or exceeded for 5% of the time (Q5) (m3 s−1), and discharges equaled
or exceeded for 90% for the time (Q90) (m3 s−1) for each of the five gauging stations for
the baseline as well as the changes (percent) from these baseline figures for each GCM
and the ensemble mean. Following the approach of [59], Qmean, Q5, and Q90 were derived
from monthly baseline and projected discharge time series data. The annual and seasonal
streamflow trends for each gauging station for each of the GCMs and the ensemble mean
are described in Table 11.

Table 10. Qmean, Q5, and Q90 discharge in m3 s−1 for the baseline and change (percent) from the
baseline for each GCM and ensemble mean (Minus sign (−) indicates declines relative to the baseline).

Ginchi Asigori Holeta Akaki Kuntrie Hombole

QMEAN Baseline 5.0 6.7 3.5 22.9 27.8 55.2
CMCC CMS 128.1 −26.6 25.9 −11.4 −37.8 17.5
CNRM CM5 128.1 59.0 54.3 3.3 29.0 −55.2
GFDL CM3 172.2 19.6 39.5 −6.0 16.7 15.7
GISS E2 R 95.9 −13.8 20.0 −26.0 −1.1 6.4

MPI ESM LR 198.3 19.1 42.7 2.4 16.1 33.8
Ensemble mean 152.4 10.2 36.2 −8.6 4.5 1.4

Q5 Baseline 24.8 33.9 16.3 110.3 124.1 250.5
CMCC CMS 39.3 −39.7 12.6 −31.4 −48.9 −8.0
CNRM CM5 39.3 −15.1 6.3 −35.9 9.5 −61.9
GFDL CM3 84.3 −5.2 24.8 −30.8 6.1 −3.3
GISS E2 R 60.1 −13.9 39.4 −24.2 14.8 17.3

MPI ESM LR 78.6 −9.2 7.6 −27.8 1.8 3.9
Ensemble mean 53.6 −25.1 −2.2 −40.8 −13.5 −21.4

Q90 Baseline 0.0 0.0 0.2 1.7 1.1 3.3
CMCC CMS - - 218.8 −100.0 158.5 −0.9
CNRM CM5 - - 275.0 −100.0 55.7 −36.8
GFDL CM3 - - 125.0 −98.9 −1.9 −100.0
GISS E2 R - - 93.8 −100.0 −34.0 −42.6

MPI ESM LR - - 68.8 −100.0 138.7 −28.0
Ensemble mean - - 312.5 −79.3 126.4 −27.1
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Table 11. Annual and seasonal streamflow trends for the baseline and each GCM. Minus sign (−)
indicate negative trends. S is Sen’s slope (m3 s−1) and Z the Z-test.

Stations Seasons
Baseline CMCC

CMS
CNRM

CM5 GFDL CM3 GISS E2 R MPI
ESMLR

Ensemble
Mean

S Z S Z S Z S Z S Z S Z S Z

Ginchi

Spr 0.00 −0.65 −0.09 −0.01 0.09 1.24 0.34 3.26 −0.04 −0.76 −0.01 −0.21 0.00 0.01
Sum −0.04 −0.08 0.00 −0.48 0.01 0.06 1.10 2.76 −0.22 −0.54 0.35 1.87 −0.01 −0.75
Aut −0.65 −1.97 −0.01 0.65 0.15 0.88 0.10 0.33 −0.24 −0.53 0.63 3.09 0.00 0.35
Win 0.00 −1.83 0.01 1.42 0.10 2.29 0.27 3.36 0.04 1.04 0.06 0.77 0.01 2.75
Ann −0.18 −1.44 0.01 0.73 1.35 1.08 0.63 2.96 −1.33 −0.50 0.36 2.60 0.05 0.44

Holeta

Spr 0.01 0.53 0.00 0.15 −0.01 −0.76 0.01 2.38 0.00 −1.88 0.00 −0.98 −0.01 −1.82
Sum −0.05 −0.08 0.00 −0.11 0.01 0.77 0.04 1.88 −0.02 −0.66 0.02 2.00 −0.01 −0.86
Aut −0.06 −0.83 0.01 1.90 0.02 2.00 0.01 0.99 0.00 0.39 0.01 1.73 0.01 1.49
Win 0.00 −0.76 0.00 1.83 0.00 0.79 0.00 3.60 0.00 0.33 0.00 0.28 0.00 0.36
Ann −0.08 −0.68 0.02 0.36 0.04 0.69 0.21 2.39 −0.08 −0.87 0.08 1.35 −0.01 −0.22

Asigori

Spr −0.05 −1.63 0.00 0.09 0.00 −0.31 0.03 4.62 0.00 −1.55 0.00 0.93 0.00 0.67
Sum −0.22 −0.30 0.01 0.79 0.01 1.09 0.05 1.69 −0.02 −0.45 0.04 2.70 0.00 0.28
Aut −0.16 −0.91 0.01 2.10 0.02 2.31 0.00 0.62 0.00 −0.19 0.02 3.96 0.01 2.55
Win −0.01 −1.25 0.00 2.55 0.00 1.70 0.00 3.54 0.00 −0.92 0.00 4.76 0.01 3.40
Ann −0.23 −1.44 0.05 1.19 0.12 1.48 0.30 2.56 −0.04 −0.32 0.22 3.64 0.08 1.52

Akaki

Spr 0.16 0.40 0.03 0.77 −0.03 −0.50 0.08 3.76 −0.05 −2.04 −0.01 −0.34 −0.01 −0.75
Sum 1.27 1.09 0.01 0.24 0.04 1.79 0.07 1.05 −0.05 −0.57 0.10 2.02 0.00 −0.02
Aut 0.13 0.20 0.02 1.29 0.04 1.41 0.02 1.10 0.02 0.54 0.03 0.89 0.02 1.48
Win 0.02 0.49 0.00 0.37 0.00 −0.10 0.05 3.72 0.01 0.98 0.00 −0.25 0.01 0.80
Ann 0.24 0.59 0.12 0.76 0.21 0.85 0.83 3.14 −0.16 −0.57 0.29 1.28 0.11 0.78

Hombole

Spr −0.39 −0.60 0.00 0.01 −0.01 −0.45 0.19 3.89 −0.06 −1.72 −0.07 −1.54 −0.06 −2.15
Sum 0.68 0.42 0.02 0.11 0.07 1.19 0.40 1.82 −0.15 −0.46 0.31 2.89 −0.08 −0.81
Aut 0.02 0.04 0.12 1.88 0.05 1.59 0.08 0.87 −0.01 −0.04 0.24 2.86 0.05 0.98
Win 0.00 0.00 0.01 0.69 0.01 2.15 0.08 4.06 0.00 0.39 0.01 0.46 0.02 1.04
Ann 0.25 0.28 0.24 0.63 0.52 1.49 2.57 2.61 −0.84 −0.65 1.75 3.04 −0.03 −0.07

Kuntrie

Spr 0.07 1.17 0.00 0.47 0.00 −0.14 0.04 4.74 0.00 −1.08 −0.01 −0.92 0.00 −0.48
Sum 2.07 2.90 −0.02 −0.53 −0.02 −0.39 0.26 2.43 −0.12 −0.82 0.14 2.36 −0.05 −1.08
Aut 0.54 1.56 0.03 1.89 0.09 2.23 0.05 1.01 −0.03 −0.33 0.11 3.30 0.03 1.32
Win 0.03 1.81 0.00 1.40 0.01 2.41 0.02 3.91 0.00 −0.39 0.01 1.83 0.00 1.33
Ann 0.69 2.46 0.07 0.59 0.26 1.00 1.33 2.78 −0.52 −0.73 0.77 3.14 0.05 0.23

The projected Qmean at Ginchi and Holeta show an increase for all five GCMs and the
ensemble mean. In contrast, Akaki Qmean shows a decrease for all GCMs except CNRM
CM5. Asigori and Kuntrie, on the other hand, show a decrease for CMCC CMS and GISS E2
R and an increase for CNRM CM5, GFDL CM3, and MPI ESM LR. Qmean at Hombole shows
an increase for all GCMs except CNRM CM5. The largest increase in Qmean is projected in
the upper catchment at Ginchi (198.3% for MPI ESM LR), while the largest decrease (55.2%
for CNRM CM5) is projected in the lower catchment at Hombole. The ensemble mean
projects an increase at all stations except Akaki.

All GCMs project increases in streamflow during periods of high flow (i.e., Q5) at
Ginchi and Holeta and decreases at Asigori and Akaki. Q5 declines at Kuntrie for CMCC
CMS and increases for the remaining GCMs. Results for Hombole, on the other hand, show
declines in high flows for CMCC CMS, CNRM CM5, and GFDL CM3 and increases for
GISS E2 R and MPI ESM LR. Q5 for the ensemble mean indicates declines during the high
flow period at all stations except Ginchi. Low streamflow (i.e., Q90) increases at Holeta
and decreases at Akaki and Hombole. Q90 at Kuntrie, on the other hand, increases for
CMCC CMS, CNRM CM5, and MPI ESM LR and decreases for GFDL CM3 and GISS E2
R. Q90 for the ensemble mean declines at Akaki and increases at Holeta, Kuntrie, and
Hombole catchments.

Annual streamflow trends: The annual baseline streamflow trends (Table 11) reveal
increasing discharge at Melka Kuntrie, Hombole, and Akaki, while decreasing trends are
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evident at Ginchi, Asigori, and Holeta. However, only Melka Kuntrie showed a statis-
tically significant increasing trend (6.9 m3 s−1 per decade). In common with projected
precipitation and temperature, there is no overall agreement on the projected trends in
both the magnitude and direction of change for streamflow across the GCMs (Table 11).
Based on individual GCM projections, significant increasing trends in annual mean dis-
charge were identified at Ginchi (6.3 m3 s−1 per decade), Holeta (2.1 m3 s−1 per decade),
Asigori (3.0 m3 s−1 per decade), Akaki (8.3 m3 s−1 per decade), Hombole (25.7 m3 s−1

per decade), and Melka Kuntrie (13.5 m3 s−1 per decade) for GFDL CM3. Similarly, the
MPI ESMLR GCM projects significant increasing trends at Ginchi (3.6 m3 s−1 per decade),
Asigori (2.2 m3 s−1 per decade), Hombole (17.5 m3 s−1 per decade), and Melka Kuntrie
(7.7 m3 s−1 per decade). In contrast, GISS E2 R projects nonsignificant but decreasing
trends at these stations. The annual trends for the ensemble mean were not significant at
all of the gauging stations.

Seasonal streamflow trends: Most of the seasonal trends for the baseline period were
not significant; significant trends were restricted to an increasing trend (20.7 m3 s−1 per
decade) for summer at Melka Kuntrie, a decreasing trend (6.5 m3 s−1 per decade) for
autumn at Ginchi, and an increasing annual trend (6.9 m 3 s−1 per decade) at Melka
Kuntrie. Similarly, the projected streamflows showed a nonsignificant increasing trend
for most of the GCMs. However, a significant increasing trend was observed in spring
at Ginchi (3.4 m3 s−1 per decade), Holeta (0.1 m3 s−1 per decade), Asigori (0.3 m3 s−1

per decade), Akaki (0.8 m3 s−1 per decade), Hombole (1.9 m3 s−1 per decade), and Melka
Kuntrie (0.4 m3 s−1 per decade) for GFDL CM3. Furthermore, summer showed a significant
increasing trend at Ginchi (3.5 m3 s−1 per decade), Holeta (0.2 m3 s−1 per decade), Asigori
(0.4 m3 s−1 per decade), Akaki (1.0 m3 s−1 per decade), Hombole (3.1 m3 s−1 per decade),
and Melka Kuntrie (1.4 m3 s−1 per decade) for MPI ESMLR. For the ensemble mean, winter
experiences a significant increasing trend at Ginchi and Asigori (at rates of 0.12 m 3 s−1 and
0.029 m 3 s−1 per decade, respectively), while autumn has a significant increasing trend
at Asigori (0.091 m 3 s−1 per decade). On the other hand, there is a significant decline in
spring at Hombole (−0.58 m 3 s−1 per decade).

Monthly streamflow trends: The monthly trends for baseline streamflow shows
nonsignificant decreases at Ginchi, Asigori, and Holeta and increases at Akaki, Hombole,
and Melka Kuntrie in most months (Figure 6). However, Ginchi experienced a significant
decrease in September (8.2 m3 s−1 per decade), November (0.1 m3 s−1 per decade), and
December (0.1 m3 s−1 per decade). In contrast, Akaki, Hombole, and Melka experienced
a significant increasing trend in January (2.0 m3 s−1, 1.6 m3 s−1, and 0.5 m3 s−1 per
decade, respectively) and November (1.7 m3 s−1, 3.1 m3 s−1, and 0.9 m3 s−1 per decade,
respectively). Melka Kuntrie also showed a significant increasing trend in May, June, July,
and December (1.1 m3 s−1, 0.6 m3 s−1, 4.5 m3 s−1, 29.6 m3 s−1, and 0.6 m3 s−1 per decade,
respectively).

The ensemble mean projects a significant increase at Ginchi in January (0.1 m3 s−1 per
decade) and December (0.1 m3 s−1 per decade). In contrast, there is a significant decreasing
trend at Holeta in April and July (rates of −0.01 m3 s−1 and −0.03 m3 s−1 per decade,
respectively). Significant increasing trends (0.1 m3 s−1 per decade) are projected at Asigori
from September to January, while significant decreasing trends are projected for April and
July (0.1 m3 s−1 and 0.3 m3 s−1 per decade, respectively). At both Akaki and Melka Kuntrie,
the ensemble mean projects significant increasing trends for October and July (0.2 m3 s−1

and 1.2 m3 s−1 per decade), while at Hombole significant decreasing trends are projected
for April (1.2 m3 s−1 per decade) and July (3.3 m3 s−1 per decade).
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Figure 6. Mean monthly streamflow for the baseline, each GCM, and the ensemble mean.

3.6. Climate Drought Index

Using the historical climate data (1984–2020) and the five GCM ensemble mean projec-
tions (2021–2100), the historical and potential future climatic droughts were analyzed for
each meteorological station using the SPEI at a time scale of 12 months (Figure 7). Accord-
ingly, the SPEI for the historical period shows that the years 1996, 1997, 2007, 2008, 2013,
2014, 2016, and 2018 were very dry, while 1999 was a very wet year. Figure 8 clearly shows
an increasing trend towards meteorological drought in recent decades (2006–2020) com-
pared with the beginning of the period (1984–1994). The SPEI trend analysis demonstrates
a decrease towards a negative value at all stations. This trend was statistically significant at
α ≤ 0.01, confirming the increasing tendency towards meteorological drought.

The projected SPEI for the period 2021–2100 indicates an increase in the frequency
and severity of drought especially for the period 2045–2072 compared with 2021–2047. The
increasing drought trend is significant (α ≤ 0.01) at all stations.
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Figure 7. Standard precipitation evaporation index for the baseline and the five GCMs’ ensemble
mean (blue indicates wet years and red dry years).

3.7. Hydrological Drought Index

The historical SDI is dominated by negative values, indicating dry years at most of the
stations, the exception being Akaki (Figure 8). The basin experienced a range of conditions
from modestly dry to very severe hydrological drought between 1986 and 2005. The MK
trend test confirmed a significant increasing trend towards negative values of SDI at Ginchi,
Asigori, Holeta, and Melka Kuntrie, supporting the assertation of increasing hydrological
drought over the past three decades. However, a significant increasing trend towards
positive values (indicating wetter conditions) was identified for Akaki, while no significant
trend was established for Hombole.

The projected SDI, on the other hand, indicates conditions that range from modestly
dry to modestly wet at all stations. The MK trend analysis confirmed an increasing trend
towards positive values (i.e., wetter years) at all stations. Trends were statistically significant
at Asigori, Ginchi, and Akaki.
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Figure 8. Hydrological drought index for the baseline and ensemble mean based on the five GCMs’
ensemble mean (blue indicates wet years and red dry years).

4. Discussion
4.1. The Impacts of Climate Change on Precipitation

This study suggests that some changes in the climate of the Upper Awash River
Basin have occurred over the period beginning in 1984 and extending to 2014. Declines in
precipitation in spring and summer and increases in autumn and winter were identified
over this baseline period, although these trends were not statistically significant. Results
show that at some stations precipitation decreased by up to 22.4 and 8.8 mm per decade in
spring and summer, respectively, between 1983 and 2014. This study, therefore, supports
earlier investigations regarding the impacts of climate change on precipitation and their
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implication for Ethiopia [60–64]. For instance, a study in the southern part of the country
revealed that precipitation in spring and summer declined between 1972 and 2011 [65]. In
another study in the northeastern part of the Blue Nile basin, a nonsignificant decreasing
trend was observed in spring between 1981 and 2010 [66]. A further study also showed
a decreasing trend in precipitation in spring throughout the country between 1980 and
2010 [67].

The IPCC third assessment report [2] stated that because of the diversity of climatic
conditions and limited meteorological stations, projected precipitation in Africa, particu-
larly at regional and local scales, is not well defined. Under intermediate warming scenarios,
one study showed an increase in projected rainfall during the dry season (December to
February) and a decrease in the rainy season (June to August) over parts of East Africa, in-
cluding the current study area [2]. This study showed that for the ensemble mean, projected
future precipitation, especially in spring and summer and as a result annually, showed a
decreasing trend at most stations. The magnitude and directions of change do, however,
vary between different GCMs, stations, and seasons, echoing the variability identified in
earlier studies employing a number (in most cases, fewer than the current study) of climate
models [20,21,67].

Declining precipitation will have a significant implication for agricultural produc-
tivities. As one of the major agricultural regions of Ethiopia, spring and summer are
overwhelmingly important in the Upper Awash River Basin because more than 95% of
crop production is produced at this time of year [68]. Decreases in precipitation together
with the extremely variable nature of rainfall, and increasing temperature, are likely to
have a significant impact on agricultural production as well as the water sector of the
basin. Furthermore, the economic dependency of both rural and urban communities on
agriculture, combined with the dominant rain-fed nature of the farming system, makes the
area particularly vulnerable to climate variability and change. It has been suggested that
climate change would affect Ethiopia’s GDP growth by 0.5–2.5% per year due to declining
agricultural productivity [69]. Another study showed that, due to rainfall variability, about
USD 2 billion will be lost in the agricultural sector over future decades [70].

4.2. The Implication of Climate Change on Streamflow

Streamflow is strongly influenced by changes in precipitation, temperature, land use,
and other factors, such as the withdrawal of water for human use. Change in streamflow
can affect the amount of water available for irrigation, water supply, and hydropower
generation. Seasonal and spatial variability of streamflow and their changes into the
future, therefore, have the potential to exert significant impacts on the economy and
local development. The area downstream of the Upper Awash River Basin is relatively
developed for irrigation. These irrigation developments include the Wonji and Metehara
sugar plantations; upper, middle, and lower Awash state farms developed for fruit and
vegetable production; and cotton plantations. Such schemes have flourished following
the construction of the Koka Dam, which defines the outlet of the current study area [71].
Streamflow changes in the upper catchment will have an impact on reservoir inflows, and
they, therefore, have the potential for large impacts on downstream projects.

This study suggests that discharges during the high flow period (as indicated by
Q5) decline by up to 61.9% compared with the baseline at some gauging stations with
the largest changes in the opposite direction indicating increases of 84.3%. The ensemble
mean, however, projects a decline in these flows at five of the stations (mean of those
declining = −40.8%). Conversely, mean flows for the ensemble mean are projected to
increase at five stations (declines at the one remaining station), although there is a notable
decline in the magnitude of the increases in a downstream direction (just 1.4% at the lowest
station). Across the different GCMs, there is considerable variability in the magnitude of
changes in mean flow, including both increases and decreases, which concur with those
results of other multi-GCM studies of change over the basin [22]. The low flow period is
projected to experience both declines and increases in discharge with Q90 reducing by 100%
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(i.e., flows cease) at Akaki and Hombole for individual GCM projections (Table 10). The
magnitude of changes in percentage terms is much higher for low flows than both mean
and high flows. These larger percentage changes in low flows agree with an earlier study
undertaken within the Upper Awash Basin using a number of GCMs, including some used
in the current study [22]. It also supports a recent global analysis showing greater risks of
change in low flow conditions compared with high flows [72]. However, for the ensemble
mean there are more declines in high flows than in low flows across the different gauging
stations. Reductions in streamflow during the high flow period results from precipitation
reductions in spring and summer, the main rainy seasons in the basin. A similar study in
the Blue Nile basin identified declines in low streamflow (Q95) of 18.1% between 1982 and
2000, while high streamflow (Q5) increased by 7.6% over the same period [73].

The trend analysis also confirmed that streamflow in the upper catchment (Ginchi,
Asigori, and Holeta gauging stations) experienced a decline over the period 1985–2010,
while it increased in the lower catchment (Akaki, Melka Kuntrie, and Hombole) in most
months and seasons. The projected streamflow, on the other hand, showed no overall
agreement in terms of both magnitude and direction of change between different GCMs. As
an example, GISS E2 R showed a dominant decreasing trend, while GFDL CM3 projected
an increasing trend in most months at Ginchi, Asigori, Hombole, and Kuntrie. CMCC CMS
projected a nonsignificant increasing trend, while for MPI ESMLR there was a significant
increasing trend in most of the months at all stations. The ensemble mean showed an
increasing monthly trend from September to February and a decreasing trend in April
and July. The seasonal results showed a decreasing trend in spring and summer, while an
increasing trend was identified for autumn and winter. At an annual level, results indicated
a decreasing trend at Holeta and Hombole and an increasing trend at the remaining stations.

4.3. The Implication of Climate Change on Meteorological and Hydrological Drought

Changes in temperature and precipitation can exacerbate extreme events, such as
meteorological and hydrological droughts. Drought is a common phenomenon that oc-
curs frequently in many parts of Ethiopia, including the study area. The frequency of
drought in the country has increased, and devastating droughts have occurred in the
recent decade [74,75]. The historical meteorological drought index used in the current
study indicated an extremely significant increasing trend across the basin (Figure 8). The
projected drought index also suggested that the basin will experience more severe droughts
over the current century. Many studies have stated that droughts in Ethiopia are El Niño
induced and that this climatic phenomenon is responsible for extreme dryness and major
rainfall failures in many parts of the country [21,64,71,72]. Historical droughts have been
associated with severe water and food shortages, widespread hunger, and diseases that
destroyed the livelihood of millions of people across a large part of Ethiopia [74]. With the
projected increase in drought incidence and severity, these extreme conditions are likely to
remain significant concerns in the country. The hydrological drought index, on the other
hand, showed significant dry years at Asigori and Holeta and very wet years at Ginchi,
Akaki, and Melka Kuntrie between 1985 and 2020. In contrast, the projected SDI indicated
that more wet years are expected than dry years.

5. Conclusions

This study demonstrated that over the baseline period (1983–2014), the Upper Awash
River Basin experienced increases in mean annual maximum temperature (Tmax) in the
ranges of 0.60 to 1.90 ◦C, while mean annual minimum temperature (Tmin) increased
between 0.63 and 3.47 ◦C. The rate of change of temperature for the baseline period ranges
from 0.2 to 0.8 ◦C per decade for both Tmax and Tmin. The projected annual rate of change
in temperature over the remainder of the current century varies in magnitude between the
five GCMs (between 0.1 and 0.4 ◦C per decade).

The trend analysis for precipitation shows a decreasing trend over the baseline period
for most of the stations. Mean annual precipitation is projected to increase at all stations
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for all GCMs except GISS ET R. The overall range of change across all GCMs and stations
is −14.9% to 60.0%. There is notable variation in the magnitude and direction of change
in monthly, seasonal, and annual precipitation across the different GCMs. In the majority
of cases, there were nonsignificant (α ≤ 0.05) trends for most months at all stations. The
ensemble mean based on the five GCMs also projected a nonsignificant trend in most
months and at most stations. However, both baseline and projected precipitation showed a
decrease in spring and summer and increases in autumn and winter.

Based on projections using the ensemble mean, streamflow declines during the high
flow period at all stations except Ginchi. On the other hand, low flows decrease at Akaki
and increase at Holeta, Kuntrie, and Hombole. The mean annual streamflow trend shows
an increase at all stations except Akaki. Individual GCMs, however, project changes that
differ in terms of both magnitude and direction. Changes range from a decrease of 55%
(Hombole for CNRM CM5) and an increase of 198% (Ginchi for MPI ESM LR). Streamflow
during wet and dry periods also showed an increase at Ginchi, Holeta, and Kuntrie and
a decrease at Asigori, Holeta, and Hombole. The baseline and projected mean monthly,
seasonal, and annual streamflow trends indicated a nonsignificant decrease at Ginchi,
Asigori, and Holeta and an increase at Akaki, Hombole, and Melka Kuntrie. There was
no agreement over the projected streamflow trend in terms of both the magnitude and
direction across the different GCMs. The GISS E2 R GCM projected a decreasing trend,
while other GCMs projected an increasing trend in most months at all stations. Statistically,
the CMCC CMS, CNRM CM5, and GISS E2 R GCMs showed a nonsignificant trend, while
the GFDL CM3 and MPI ESMLR GCMs indicated a significant increasing trend at all
stations. The seasonal ensemble mean streamflow, however, showed a decreasing trend
in spring and summer at all stations except Asigori. The ensemble mean also showed a
decrease at Holeta and Hombole and an increase at the remaining stations.

The SPEI confirmed that the basin experienced significant droughts in the past, and
the frequency and severity of drought will increase in the future. The historical SDI, on the
other hand, showed hydrological drought at Asigori and Holeta and very wet years at the
remaining stations. The trend of the projected SDI showed more wet years than dry years.

Climate change in the basin would create seasonal variation in precipitation and
streamflow. Both precipitation and streamflow will decline in the wet seasons and increase
in the dry seasons. These changes are likely to have an impact on the agricultural system
and water resource use within the basin. As such, there will be an urgent need to develop
mitigation approaches in response to changing hydrometeorological conditions.

This research work is based on five GCMs and the intermediate emission scenarios.
The extension of the research could include additional GCMs and emission scenarios to
expand the assessment of the impacts of climate change on the hydrology of the Upper
Awash Basin.
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Appendix A

Table A1. Simulation performance of different GCMs.

Station GCM Models Precipitation Temperature

MRE COR NSE MRE COR NSE

Addis
Ababa

CMCC_CMS 1.43 0.99 0.99 0.002 0.99 0.99
CNRM-CM5 4.29 0.99 0.98 0.000 0.99 0.99
GFDL-CM3 −0.72 0.97 0.94 0.009 0.99 0.99
GISS-ET-R −1.36 0.99 0.98 −0.350 0.97 0.95
MPI-ESM-LR 1.16 0.91 0.84 0.000 0.99 0.99

Alem
Tena

CMCC_CMS 2.40 0.99 0.98 0.002 0.99 0.99
CNRM-CM5 1.81 0.97 0.95 −0.004 0.99 0.99
GFDL-CM3 0.47 0.99 0.97 −0.007 0.99 0.99
GISS-ET-R −0.16 0.99 0.98 −0.317 0.97 0.93
MPI-ESM-LR 1.81 0.89 0.80 0. 000 0.99 0.99

Ginchi

CMCC_CMS 7.18 0.99 0.98 0.002 0.99 0.99
CNRM-CM5 8.04 0.99 0.98 −1.224 0.99 0.99
GFDL-CM3 5.48 0.98 0.97 −0.042 0.99 0.99
GISS-ET-R 4.25 0.99 0.97 −0.387 0.99 0.99
MPI-ESM-LR 8.67 0.94 0.88 0.000 0.99 0.99

Hombole

CMCC_CMS 42.20 0.99 0.71 0. 000 0.99 0.99
CNRM-CM5 42.21 0.99 0.71 0.002 0.99 0.99
GFDL-CM3 42.20 0.99 0.71 0.137 0.99 0.99
GISS-ET-R 42.20 0.99 0.71 −0.314 0.98 0.94
MPI-ESM-LR 42.16 0.99 0.71 0.010 0.99 0.99

Mojo

CMCC_CMS 1.46 0.98 0.97 0.000 0.99 0.99
CNRM-CM5 3.45 0.99 0.98 0.006 0.99 0.99
GFDL-CM3 −0.26 0.97 0.94 0.024 0.66 0.32
GISS-ET-R −1.75 0.98 0.97 −0.313 0.98 0.95
MPI-ESM-LR 0.90 0.91 0.83 0.010 0.99 0.99

Tulu Bolo

CMCC_CMS 8.38 0.99 0.97 0.003 0.99 0.99
CNRM-CM5 8.60 0.99 0.97 0.003 0.99 0.99
GFDL-CM3 4.46 0.99 0.98 −0.019 0.99 0.99
GISS-ET-R 4.78 0.98 0.97 −0.351 0.94 0.83
MPI-ESM-LR 10.20 0.95 0.89 0.000 0.99 0.99
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