33 research outputs found

    Hyalotekite, (Ba,Pb,K)(4)(Ca,Y)(2)Si-8(B,Be)(2)(Si,B)(2)O28F, a Tectosilicate Related to Scapolite: New Structure Refinement, Phase Transitions and a Short-Range Ordered 3B Superstructure

    Get PDF
    Hyalotekite, a framework silicate of composition (Ba,Pb,K)(4)(Ca,Y)(2)Si-8(B,Be)(2) (Si,B)(2)O28F, is found in relatively high-temperature(greater than or equal to 500 degrees C) Mn skarns at Langban, Sweden, and peralkaline pegmatites at Dara-i-Pioz, Tajikistan. A new paragenesis at Dara-i-Pioz is pegmatite consisting of the Ba borosilicates leucosphenite and tienshanite, as well as caesium kupletskite, aegirine, pyrochlore, microcline and quartz. Hyalotekite has been partially replaced by barylite and danburite. This hyalotekite contains 1.29-1.78 wt.% Y2O3, equivalent to 0.172-0.238 Y pfu or 8-11% Y on the Ca site; its Pb/(Pb+Ba) ratio ranges 0.36-0.44. Electron microprobe F contents of Langban and Dara-i-Pioz hyalotekite range 1.04-1.45 wt.%, consistent with full occupancy of the F site. A new refinement of the structure factor data used in the original structural determination of a Langban hyalotekite resulted in a structural formula, (Pb1.96Ba1.86K0.18)Ca-2(B1.76Be0.24)(Si1.56B0.44)Si8O28F, consistent with chemical data and all cations with positive-definite thermal parameters, although with a slight excess of positive charge (+57.14 as opposed to the ideal +57.00). An unusual feature of the hyalotekite framework is that 4 of 28 oxygens are non-bridging; by merging these 4 oxygens into two, the framework topology of scapolite is obtained. The triclinic symmetry of hyalotekite observed at room temperature is obtained from a hypothetical tetragonal parent structure via a sequence of displacive phase transitions. Some of these transitions are associated with cation ordering, either Pb-Ba ordering in the large cation sites, or B-Be and Si-B ordering on tetrahedral sites. Others are largely displacive but affect the coordination of the large cations (Pb, Ba, K, Ca). High-resolution electron microscopy suggests that the undulatory extinction characteristic of hyalotekite is due to a fine mosaic microstructure. This suggests that at least one of these transitions occurs in nature during cooling, and that it is first order with a large volume change. A diffuse superstructure observed by electron diffraction implies the existence of a further stage of short-range cation ordering which probably involves both (Pb,K)-Ba and (BeSi,BB)-BSi

    New Mineral Names

    Get PDF

    New Mineral Names

    Get PDF

    Towards a revisitation of vesuvianite-group nomenclature: The crystal structure of Ti-rich vesuvianite from Alchuri, Shigar Valley, Pakistan

    Get PDF
    © 2016 International Union of Crystallography.Vesuvianite containing 5.85 wt% TiO2 from an Alpine-cleft-type assemblage outcropped near Alchuri, Shigar Valley, Northern Areas, Pakistan, has been investigated by means of electron microprobe analyses, gas-chromatographic analysis of H2O, X-ray powder diffraction, single-crystal X-ray structure refinement, 27Al NMR, 57Fe Mössbauer spectroscopy, IR spectroscopy and optical measurements. Tetragonal unit-cell parameters are: a = 15.5326 (2), c = 11.8040 (2) Å, space group P4/nnc. The structure was refined to final R1 = 0.031, wR2 = 0.057 for 11247 I > 2σ(I). A general crystal-chemical formula of studied sample can be written as follows (Z = 2): [8-9](Ca17.1Na0.9) [8]Ca1.0[5](Fe2+ 0.44Fe3+ 0.34Mg0.22) [6](Al3.59Mg0.41) [6](Al4.03Ti2.20Fe3+1.37Fe2+ 0.40) (Si18O68) [(OH)5.84O2.83F1.33]. The octahedral site Y2 is Al-dominant and does not contain transition elements. Another octahedral site Y3 is also Al-dominant and contains Fe2+, Fe3+ and Ti. The site Y1 is split into Y1a and Y1b predominantly occupied by Fe2+ and Fe3+, respectively. The role of the Y1 site in the diversity of vesuvianite-group minerals is discussed

    New Minerals Names - January 2014

    No full text
    This New Mineral Names has entries for eight new minerals, including ferrotochilinite, ferrovalleriite, fluoro-potassic-pargasite, guidottiite, hydroxylchondrodite, hydroxymanganopyrochlore, lahnsteinite, and mariinskite. These new minerals have been published in Clays and Clay Minerals, Doklady Akademii Nauk (Doklady Earth Sciences), Mineralogical Magazine, and Zapiski Rossiyskogo Mineralogicheskogo, Obshchestva (Proceedings of the Russian Mineralogical Society)

    New Mineral Names - May 2013

    No full text

    New Mineral Names (August - September 2012)

    No full text
    In This Issue In this New Mineral Names, we present alexandrovite, arsenohopeite, \ue5skagenite-(Nd), bassoite, beaverite-Zn, carlosbarbosaite, cryptophyllite, cuprokalininite, davidlloydite, florencite-(Sm), natrotitanite, and shlykovite from journals around the world
    corecore