401 research outputs found
Kaon Phase Space Density in Heavy Ion Collisions
The first measurement of kaon phase space densities are presented as a
function of transverse mass, center of mass energy and the number of
participants. The kaon phase space density increases with the number of
participants from e+e- to Pb+Pb collisions. However the ratio of the kaon and
pion phase space densities at low transverse momentum is independent of the
number of participants for sqrt{s}=17GeV/nucleon
This paper is dedicated to Francis Riccardelli, engineer for the Port
Authority, who died on September 11th 2001 while evacuating others.Comment: 4 pages, 2 eps figures, proceedings of Strange Quarks in Matter,
Frankfurt 2001, submitted to J. Phys. G In response to referees comments I
derived an expresion for the ratio of kaon and pion phase space densites and
made several clarifications in the tex
Bose-Einstein Correlations for Three-Dimensionally Expanding, Cylindrically Symmetric, Finite Systems
The parameters of the Bose-Einstein correlation function may obey an {\it
-scaling}, as observed in and reactions at CERN SPS.
This -scaling implies that the Bose-Einstein correlation functions view
only a small part of the big and expanding system. The full sizes of the
expanding system at the last interaction are shown to be measurable with the
help the invariant momentum distribution of the emitted particles. A vanishing
duration parameter can also be generated in the considered model-class with a
specific dependence.Comment: 35 pages, ReVTeX, LaTeX, no figures, discussion extende
Source Dimensions in Ultrarelativistic Heavy Ion Collisions
Recent experiments on pion correlations, interpreted as interferometric
measurements of the collision zone, are compared with models that distinguish a
prehadronic phase and a hadronic phase. The models include prehadronic
longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and
rescattering of the produced hadrons. We find that the longitudinal and outward
radii are surprisingly sensitive to the algorithm used for two-body collisions.
The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a
heavy target requires the existence of a prehadronic phase which converts to
the hadronic phase at densities around 0.8-1.0 GeV/fm. The transverse radii
cannot be reproduced without introducing more complex dynamics into the
transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major
change is an additional discussion of the classical two-body collision
algorithm, a (compressed) postscript file of the complete paper including
figures can be obtained from Authors or via anonymous ftp at
ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.
Strange Meson Enhancement in PbPb Collisions
The NA44 Collaboration has measured yields and differential distributions of
K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the
center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A
considerable enhancement of K+ production per pi is observed, as compared to
p+p collisions at this energy. To illustrate the importance of secondary hadron
rescattering as an enhancement mechanism, we compare strangeness production at
the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE
One and two dimensional analysis of 3pi correlations measured in Pb+Pb interactions
3pi- correlations from Pb+Pb collisions at 158 GeV/c per nucleon are
presented as measured by the focusing spectrometer of the NA44 experiment at
CERN. The three-body effect is found to be stronger for PbPb than for SPb. The
two-dimensional three-particle correlation function is also measured and the
longitudinal extension of the source is larger than the transverse extension
Two-Proton Correlations from 14.6A GeV/c Si+Pb and 11.5A GeV/c Au+Au Central Collisions
Two-proton correlation functions have been measured in Si+Pb collisions at
14.6A GeV/c and Au+Au collisions at 11.5A GeV/c by the E814/E877 collaboration.
Data are compared with predictions of the transport model RQMD and the source
size is inferred from this comparison. Our analysis shows that, for both
reactions, the characteristic size of the system at freeze-out exceeds the size
of the projectile, suggesting that the fireball created in the collision has
expanded. For Au+Au reactions, the observed centrality dependence of the
two-proton correlation function implies that more central collisions lead to a
larger source sizes.Comment: RevTex, 12 pages, 5 figure
A new VME trigger processor for the NA57 experiment
The ALICE experiment will use a trigger concept requiring independent deadtimes for each sub-detector system, and with detector-specific past-future protection. These features are implemented in a new VME-based trigger processor for the NA57 experiment. Monitoring and diagnostic features of the new trigger processor are also described.List of Figures Figure 1:ALICE trigger logic diagram. Figure 2:Layout of the NA57 experiment. Figure 3:Schematic layout of NA57 VME central trigger processor. Figure 4:Example of a trigger definition script. </A
Scientific Objectives of Einstein Telescope
The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1Hz to 10kHz, with sensitivity a factor 10 better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas
- …