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Abstract

There are two type of scales present simultaneously in the space-like as well

as in the time-like directions in a model-class describing a cylindrically sym-

metric, �nite, three-dimensionally expanding boson source. One type of the

scales is related to the �nite lifetime or geometrical size of the system, the

other type is governed by the rate of change of the local momentum distribu-

tion in the considered temporal or spatial direction. The parameters of the

Bose-Einstein correlation function may obey an Mt-scaling, as observed in

S+Pb and Pb+Pb reactions at CERN SPS. ThisMt-scaling implies that the

Bose-Einstein correlation functions view only a small part of the big and ex-

panding system. The full sizes of the expanding system at the last interaction

are shown to be measurable with the help the invariant momentum distri-

bution of the emitted particles. A vanishing duration parameter can also be

generated, with a speci�c Mt dependence, in the considered model-class.
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Introduction. The method of intensity interferometry has recently become a widely used

tool for determining the space-time picture of high energy heavy ion collisions. Originally,

the method was invented [1] to measure angular diameters of distant stars. The objects

under study were approximately static and the length-scales astronomical. In principle

the same method is applied to measure space-time characteristics of high energy heavy ion

collisions, where the objects are expanding systems, with life-times of a few fm/c (10�23 sec)

and length-scales of a few fm (10�15 m).

In the case of high energy heavy-ion collisions intensity interferometry is pursued to

infer the equation of state and identify the possible formation of a transient Quark-Gluon

Plasma state from a precise determination of the freeze-out hyper-surface, as scanned by

the Bose-Einstein correlation function (BECF), see e. g. the contributions of the NA35,

NA44 and WA80 collaborations in ref. [2]. For an introduction and review on Bose-Einstein

correlations see ref. [3].

The recent 32S + 197Pb reactions at 200 AGeV laboratory bombarding energy resulted

in a non-expected, symmetrical BECF-s if measured in the LCMS, the longitudinally co-

moving system of the boson pairs [2]. The longitudinal component was shown to measure

a thermal length-scale, RL = �0
q
T0=mt, introduced �rst in ref. [4] for an in�nite, longitu-

dinally expanding Bjorken tube. The side radius parameter was thought to measure the

geometrical radius and the out component to be sensitive to the duration of the particle

freeze-out times [5,6]. The radius parameters turned out to be equal within the experimen-

tal errors. Although this might be just a coincidence, in this Letter we show that such a

behavior, valid in a wide mt interval, may be a natural consequence of a cylindrically sym-

metric three-dimensional hydrodynamic expansion. In this case the local temperature, the

gradients of the temperature distribution and the 
ow-gradients generate `thermal' length-

scales in all these space-like directions. Changes in the local temperature during the particle

emission induce a temporal scale, the thermal duration. Recently it became clear that the

parameters of the BECF-s measure the lengths of homogeneity [4,7{9] which in turn were

shown to be expressible in terms of the geometrical and the thermal lengths, [10,6,9].
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We shall derive here model-independent relationships among the functional forms of the

BECF-s as given in the laboratory (LAB) frame and the LCMS frame. We introduce the

longitudinal saddle-point system (LSPS) in which the functional form of the BECF-s turns

out to be the simplest one.

A new class of analytically solvable models is introduced thereafter, describing a three-

dimensionally expanding, cylindrically symmetric system for which the geometrical sizes and

the duration of the particle emission are �nite. In this class of the models there are two

length-scales present in all directions, including the temporal one. The BECF is found to be

dominated by the shorter, while the momentum distribution by the longer of these scales.

The interplay between the �nite "geometrical scales" of the boson-emitting source and the

�nite "thermal scales" shall be considered in detail.

Formalism. Both the momentum spectra and the BECF-s are prescribed in the applied

Wigner-function formalism [11,3]. In this formalism the BECF is calculated from the two-

body Wigner-function assuming chaotic particle emission. In the �nal expression the time-

derivative of the Wigner function is approximated [11,3] by a classical emission function

S(x; p), which is the probability that a boson is produced at a given x = (t; r ) = (t; rx; ry; rz)

point in space-time with the four-momentum p = (E;p ) = (E; px; py; pz). The o�-shell two-

particle Wigner functions shall be approximated by the o�-shell continuation of the on-shell

Wigner-functions [11,10,6,9]. The particle is on the mass shell, m2 = E2 � p2. Please note

the di�erence between x indicating a four-vector in space-time and the script-size x which

indexes a direction in coordinate space.

A useful auxiliary function is the Fourier-transformed emission function

~S(�k;K) =
Z
d4xS(x;K) exp(i�k � x); (1)

where

�k = p1 � p2; K =
p1 + p2

2

(2)
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and �k � x stands for the inner-product of the four-vectors. Then the one-particle inclusive

invariant momentum distribution (IMD) of the emitted particles, N1(p) is given by

N1(p) = ~S(�k = 0;K = p) =
E1

�tot

d�

dp

; (3)

where �tot is the total inelastic cross-section. This IMD is normalized to the mean multi-

plicity hni as

Z
dp

E

N1(p) = hni: (4)

In the present Letter e�ects arising from the �nal state Coulomb and Yukawa interactions

shall be neglected. The two-particle BECF can be calculated from the emission function

with the help of the well-established approximation

C(�k;K) =
hn(n � 1)i

hni2

N2(p1;p2)

N1(p1)N1(p2)

' 1 +
j ~S(�k;K) j2

j ~S(0;K) j2
; (5)

see e.g. ref. [11] for further details. The corrections to this expression are known to be

small [9]. Note that among the eight components of �k and K only six are independent

due to the two constraints p21 = p22 = m2. These constraints can be formulated alternatively

as �k � K = 0 and K2 = m2 � �k2=4. Thus the two-particle BECF depends on the o�-

shell emission function, which we approximate by the o�-shell continuation of the on-shell

emission functions.

A similar but not identical approximation is to replace ~S(�k;K) with ~S(�k;K 0) ex-

changing the o�-shell K to the on-shell K 0. The latter mean momentum is de�ned to be

on-shell as K 00 = m2�K02 where K0 = K = (p1+p2)=2. The di�erences between these two

approximation schemes are of O(�k=m). The above two approximation schemes coincide

in the �k ! 0 limit when the Bose-Einstein correlations are maximal. Since we shall make

use of the �k �K = 0 constraint which is exact only if the K four-vector is o�-shell, we shall

approximate the o�-shell emission function in eq. ( 5) with the o�-shell continuation of the

on-shell emission function.
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General considerations. We model the emission function in terms of the longitudinally

boost-invariant variables: the (longitudinal) proper-time, � =
q
t2 � r2z , the space-time ra-

pidity � = 0:5 ln ( (t+ z) = (t� z) ), the transverse mass mt =
q
E2 � p2z and the momentum-

space rapidity y = 0:5 ln ( (E + pz) = (E � pz) ). In the transverse direction, the transverse

radius, rt =
q
r2x + r2y is introduced. We have

t = � cosh(�); z = � sinh(�): (6)

For systems undergoing a boost-invariant longitudinal expansion, the emission function may

be a function of boost-invariant variables only. These are � , rx; ry, px; py and � � y. How-

ever, for �nite systems the exact longitudinal boost-invariance cannot be achieved and the

emission function becomes a function of � � y0 too, where y0 stands for the mid-rapidity.

Thus approximate boost-invariance is recovered only in the mid-rapidity region, where terms

proportional to ��y0 can be neglected. Thus for �nite systems undergoing a boost-invariant

longitudinal expansion the emission function can be given in terms of these variables as

S(x;K) d4x = S�(�; �; rx; ry) d� �0d� drx dry: (7)

Here we introduced the constant �0 in front of d� due to dimensional reasons and in-

cluded the Jacobian from the d4x to the d� d� drx dry variables into the emission function

S�(�; �; rx; ry;K). The subscript � indicates that the functional form of the emission function

is changed with the change of the variables. Further, dependences on the mean momentum

K as well as on the mid-rapidity y0 are also indicated with the subscript
�
. The e�ec-

tive, momentum-dependent parameters of the emission function S
�
(�; �; rx; ry) shall also be

indexed with � in the forthcoming. Suppose that the Fourier-transform ~S(�k;K) can be

evaluated in terms of the � and � variables in the small �k region relevant for the anal-

ysis of the BECF-s, since the region around xs(K), where the Fourier integrals pick up

the dominant contribution from, is su�ciently small so that within this region the � and �

dependence of t and z can be linearized as

t ' � cosh[�s] + (� � �s)�s sinh[�s] (8)
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z ' � sinh[�s] + (� � �s)�s cosh[�s] (9)

with negligible second-order corrections. The subscript s stands for the point where the

emission function is maximal (we assume that S(x;K) has only one maximum for any values

of K). We do not assume at this point whether the function � lnS(x;K) is expandable into

a (multi-variate) Taylor series [9] around its unique minimum at the saddle point xs or not,

merely we assume that the Fourier-transformed ~S(�k;K) exists. See the Appendix for a

clarifying example.

The principal directions for the decomposition of the relative momentum at a given

value of the mean four-momentum K are given as [12,5]: the out direction is parallel to

the component of K, which is perpendicular to the beam, indexed with out, the longitudinal

or long direction is parallel to the beam-axis rz, this component of the relative momentum

is indexed with L, and the remaining direction orthogonal to both longitudinal and out is

called the side direction, indexed with side. Thus the mean and the relative momenta are

decomposed as K = (K0;Kout; 0;KL) and �k = (Q0; Qout; Qside; QL).

Since the particles are on mass-shell, we have

0 = K ��k = K0Q0 �KLQL �KoutQout: (10)

Thus the energy di�erence Q0 can be expressed as

Q0 = �LQL + �outQout (11)

where we have introduced the longitudinal and the outward component of the velocity of

the pair, �L = KL=K0 and �out = Kout=K0, respectively. These relations become further

simpli�ed in the LCMS, the longitudinally co-moving system, introduced �rst in ref. [5].

The LCMS is the frame where KL = 0 thus �L = 0. We also have �out = �t where t stands

for transverse, e.g. rt =
q
r2x + r2y and mt =

q
m2 + r2x + r2y . Let us express the Fourier

integrals in terms of the � and � variables in the laboratory reference frame (LAB), utilizing

eqs. (8,9). The results in LCMS can be obtained from the more complicated results in the
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LAB frame by the substitution �L = 0 and �out = �t . To simplify the notation, let us

rewrite

�k � x = Q0t�Qoutrx �Qsidery �QLrz ' Q�� �Qoutrx �Qsidery �Q��s(� � �s); (12)

utilizing the linearized eqs. (8,9). We have introduced the coe�cients of the � and the

�s(� � �s) as new variables given by

Q� = Q0 cosh[�s]�QL sinh[�s] = (�tQout + �LQL) cosh[�s]�QL sinh[�s]; (13)

Q� = QL cosh[�s]�Q0 sinh[�s] = QL cosh[�s]� (�tQout + �LQL) sinh[�s] (14)

From these relations it follows that

C(�k;K) ' 1 +
j ~S(�k;K) j2

j ~S(0;K) j2
' 1 +

j ~S�(Q� ; Q�; Qout; Qside) j
2

j ~S�(0; 0; 0; 0) j
2

: (15)

Note that this expression contains a four-dimensional Fourier-transformed function, and

among the four variables Q� ; Q�; Qout and Qside only three are independent due to eq. (11).

Note also that at this point the BECF may have a non-Gaussian structure, and its depen-

dence on its variables does not factorize.

The core/halo model. If the system under consideration consists of a core characterized

by a hydrodynamical expansion and small regions of homogeneity, and a surrounding halo

of long-lived resonances, then the above general expression can be further evaluated if the

halo is characterized by su�ciently large regions of homogeneity. Indeed, the long lived

resonances may decay in a large volume proportional to their lifetime, and the decay products

are emitted with a given momentum distribution from the whole volume of the decay. Thus

the halo of long-lived resonances is characterized by large regions of homogeneity. (In case

of the pionic halo the dominant long-lived resonances are !; �; �0 and K0, all with life-times

greater than 20 fm/c). If the emission function is a sum of the emission function of the core

and the halo,

S�(�; �; rx; ry) = S�;c(�; �; rx; ry) + S�;h(�; �; rx; ry) (16)
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and the Fourier-transformed emission function of the halo is su�ciently narrow to vanish

at the �nite resolution of the relative momentum �k in a given experiment, then one can

show [23] that

N1(p) = N1;c(p) +N1;h(p); (17)

C(�k;K) = 1 + ��
j ~S�;c(Q� ; Q�; Qout; Qside) j

2

j ~S�;c(0; 0; 0; 0) j
2

; (18)

where N1;i(p) indicates the number of particles emitted from the halo or from the core for

i = h; c and the e�ective intercept parameter,

�� = ��(K) =

2
664
N1;c(p)

N1(p)

3
775
2

(19)

is the square of the ratio of the number of particles emitted from the core to the number

of all the emitted particles with a given momentum p. This e�ective intercept parameter

arises due to the �nite relative momentum resolution and the comparably large region of

homogeneity characterizing the halo part of the system.

If the emission function of the core can be factorized,

S�;c(�; �; rx; ry) = H�(� )G�(�) I�(rx; ry) (20)

where H�(� ) stands for the e�ective emission function in proper-time, G�(�) stands for

the e�ective emission function in space-time rapidity, and I�(rx; ry) stands for the e�ective

emission function in the transverse directions, then the expression for the BECF can be

further simpli�ed as

C(�k;K) = 1 + ��
j ~H�(Q�) j

2 j ~G�(Q�) j
2 j ~I�(Qout; Qside) j

2

j ~H�(0) j
2 j ~G�(0) j

2 j ~I�(0; 0) j
2

: (21)

If the I�(rx; ry) function is symmetric for rotations in the (rx; ry) plane around its maximum

point rx;s then one may introduce Qt =
q
Q2

side +Q2
out to �nd
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C(�k;K) = 1 + ��
j ~H�(Q�) j

2 j ~G�(Q�) j
2 j ~I�(Qt) j

2

j ~H�(0) j
2 j ~G�(0) j

2 j ~I�(0) j
2

: (22)

Such factorization around the saddle-point happens e.g. for the new class of analytically

solvable models discussed in the subsequent part. From the above expression it is clear that

for this type of models the dependence of the BECF on the components of the relative mo-

mentum can be diagonalized with appropriate choice of the three independent components

of the relative momentum. Note that the assumed existence of the Fourier-transformed

distribution functions is a weaker condition than the assumption of the analyticity of the

Fourier-transformed function, see Appendix for an example. Another example was given

e.g. in ref. [13] for a H(� ) distribution for which ~H(Q�) is not analytic function at Q� = 0

and j H(Q�) j2 starts with a linear term. In mathematical statistics it is well known that

the Fourier-transformed stable distributions are not analytic at Q = 0 [14]. On the other

hand, there are many physically interesting Gaussian models which correspond to the mul-

tivariate second order Taylor expansion of the above general results. The out-longitudinal

cross term [9] has been recently discovered also in this context. To study its properties let

us apply a Gaussian approximation to the e�ective distribution functions as

H�(� ) / exp(�(� � �s)
2=(2�� 2

�
) ); (23)

G
�
(�) / exp(�(� � �s)

2=(2��2
�
); (24)

I�(�) / exp(�( (rx � rx;s)
2 + (ry � ry;s)

2)=(2R2
�
) ) (25)

Apart from the momentum-dependent parameters ���;��� and R� the mean emission point

may also be momentum-dependent in the above expression, �s = �s(K), �s = �s(K), rx;s =

rx;s(K) and ry;s = ry;s(K). For the sake of simplicity we do not specify the normalization

constants in eq. (25) since they cancel from the BECF which is given by

C(�k;K) = 1 + �� exp(�Q
2
���

2
�
�Q2

��
2
s��

2
�
�Q2

tR
2
�
): (26)

This is a diagonal form of BECF-s for which the factorization property, eq. (20) and the

Gaussian approximation for the core, eq. (25) are simultaneously satis�ed. In the present
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form of the BECF, there are no cross-terms among the chosen variables. Now, let us rewrite

this form using the standard HBT coordinate system [12] to �nd

C(�k;K) = 1 + �� exp(�R
2
sideQ

2
side �R2

outQ
2
out �R2

LQ
2
L � 2R2

out;LQoutQL) (27)

R2
side = R2

�
; (28)

R2
out = R2

�
+ �R2

out; (29)

�R2
out = �2

t (cosh
2[�s]��

2
�
+ sinh2[�s]�

2
s��

2
�
) (30)

R2
L = (�L sinh[�s]� cosh[�s])

2� 2s��
2
�
+ (�L cosh[�s]� sinh[�s])

2�� 2
�

(31)

R2
out;L = (�t cosh[�s](�L cosh[�s]� sinh[�s]))��

2
�
+

(�t sinh[�s](�L sinh[�s]� cosh[�s]))�
2
s��

2
�

(32)

This result is valid in any frame. We see that the life-time information �� 2
�
and the invariant

measure of the longitudinal size along the �s = const hyperbola, � 2s��
2
�
appear in a mixed

form in the R2
out; R

2
L and the R2

out;L source parameters. These results simplify a lot in the

LCMS system, where �L = 0:

�R2
out = �2

t (cosh
2[�s]��

2
�
+ sinh2[�s]�

2
s��

2
�
) (33)

R2
L = cosh[�s]

2� 2s��
2
�
+ sinh[�s]

2�� 2
�

(34)

R2
out;L = ��t sinh[�s] cosh[�s](��

2
�
+ � 2s��

2
�
) (35)

If we study an expansion in terms of � =j Y � y0 j =��, where Y is the rapidity belonging

to K the mean momentum of the pair, and �� >> ��� is the geometrical size of the

expanding system in the space-time rapidity variable, it is obvious that in the LAB frame

�s(LAB) = Y +O(�), since in the � ! 0 limit we recover boos-invariance and the particle

emission must be centered around the only scale: the rapidity of the pair. Similarly we

see that �s(LCMS) = O(�). Follows that the cross-term and the crossing of temporal and

longitudinal information in the LAB frame is a leading order e�ect,

�R2
out = �2

t (cosh
2[Y ]�� 2

�
+ sinh2[Y ]� 2s��

2
�
) (36)
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R2
L =

� 2s��
2
�

cosh2[Y ]

; (37)

R2
out;L = ��t

sinh[Y ]

cosh2[Y ]

� 2s��
2
�
: (38)

However, in the LCMS, the mixing of the temporal and longitudinal information is only

next-to leading order according to eq. 35, i.e. R2
out;L(LCMS) = 0 +O(�). However, if the

j Y � y0 j<< �� condition is not satis�ed, the out-long cross-term might be large even in

LCMS, as has been demonstrated numerically in ref. [15].

Let us de�ne the LSPS, the longitudinal saddle point system, to be the frame where

�s = 0. Since in a �xed frame �s = �s(K), the LSPS frame may depend on K (e.g. on

transverse mass of the pair). In the LSPS frame the out-long cross-term and the mixing of

the temporal and time-like informations can be diagonalized. We have in LSPS

�R2
out = �2

t��
2
�
; (39)

R2
L = � 2s��

2
�
+ �2

L��
2
�
; (40)

R2
out;L = �t�L��

2
�
; (41)

as follows from eqs. (33-e:lrol). Introducing the new variables Q0 = �tQout + �LQL and

Qt =
q
Q2

out +Q2
side we obtain for the correlation function

C(�k;K) = 1 + �
�
exp(��� 2

�
Q2

0 � � 2s��
2
�
Q2

L �R2
�
Q2

t ): (42)

From this relationship we also see that Q0(LSPS) = Q� ; QL(LSPS) = Q�, c.f. eq. (26).

This relationship clari�es the physical signi�cance of the �s, the space-time rapidity of the

maximum of the emission function in any frame: �s is the cross-term generating hyperbolic

mixing angle for cylindrically symmetric, �nite systems undergoing longitudinal expansion

and satisfying the factorization property eq. (20). This cross-term generating mixing angle,

�s vanishes exactly in the LSPS frame, becomes a small parameter in the LCMS if j Y �y0 j

=�� << 1 and becomes leading order in any frame signi�cantly di�erent from LSPS or
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LCMS. Thus we con�rm the recent �nding of S. Chapman et al, that the out-longitudinal

cross-term can be diagonalized away if one �nds the (transverse mass dependent) longitudinal

rest frame of the source [16].

Up to this point, we have reviewed the properties of BECF-s without reference to any

particular model. Let us study the analytic properties of an analytically solvable model-class

in the subsequent parts.

A new class of analytically solvable models. For central heavy ion collisions at high en-

ergies the beam or z axis becomes a symmetry axis. Since the initial state of the reaction

is axially symmetric and the equations of motion do not break this pattern, the �nal state

must be axially symmetric too. However, in order to generate the thermal length-scales in

the transverse directions, the 
ow-�eld must be either three-dimensional, or the tempera-

ture distribution must have signi�cant gradients in the transverse directions. Furthermore,

the local temperature may change during the the duration of the particle emission either

because of the re-heating of the system caused by the hadronization [17] and/or intensive

re-scattering processes or the local temperature may decrease because of the expansion and

the emission of the most energetic particles from the interaction region.

We study the following model emission function for high energy heavy ion reactions:

S(x;K) d4x =
g

(2�)3
mt cosh(� � y) exp

0
BB@�

K � u(x)

T (x)

+
�(x)

T (x)

1
CCA H(� )d� �0d� drx dry; (43)

Here g is the degeneracy factor, u(x) stands for the four-velocity given by

u(x) '

0
BB@cosh(�)

0
BB@1 + b2

r2x + r2y

2� 20

1
CCA ; b

rx

�0

; b
ry

�0

; sinh(�)

0
BB@1 + b2

r2x + r2y

2� 20

1
CCA

1
CCA ; (44)

the local temperature distribution T (x) at the last interaction point is given by

1

T (x)

=
1

T0

0
BB@1 + a2

r2x + r2y

2� 20

1
CCA

0
BB@1 + d2

(� � �0)
2

2� 20

1
CCA ; (45)

and the local rest density distribution is controlled by the chemical potential �(x) for which

we have the ansatz
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�(x)

T (x)

=
�0

T0

�
r2x + r2y

2R2
G

�
(� � y0)

2

2��2
: (46)

The proper-time distribution of the last interaction points is assumed to have the following

simple form:

H(� ) =
1

(2��� 2)(1=2)
exp(�(� � �0)

2=(2�� 2))): (47)

This emission function corresponds to a Boltzmann approximation to the local momentum

distribution of a longitudinally expanding �nite system which expands into the transverse

directions with a transverse 
ow which is non-relativistic at the saddle-point. The trans-

verse gradients of the local temperature at the last interaction points are controlled by the

parameter a. The strength of the 
ow is controlled by the parameter b. The parameter

c = 1 is reserved to denote the speed of light, and the parameter d controls the strength of

the change of the local temperature during the course of particle emission.

For the case of a = b = d = 0 we recover the case of longitudinally expanding �nite

systems as presented in ref. [6]. The �nite geometrical and temporal length-scales are rep-

resented by the transverse geometrical size RG, the geometrical width of the space-time

rapidity distribution �� and by the mean duration of the particle emission �� . E�ects

arising from the �nite longitudinal size were calculated analytically in ref. [19] in certain

limited regions of the phase-space. We assume here that the �nite geometrical and temporal

scales as well as the transverse radius and proper-time dependence of the inverse of the local

temperature can be represented by the mean and the variance of the respective variables

i.e. we apply a Gaussian approximation, corresponding to the forms listed above, in order

to get analytically trackable results. We have �rst proposed the a = 0; b = 1 and d = 0

version of the present model, and elaborated also the a = b = d = 0 model [6] correspond-

ing to longitudinally expanding �nite systems with a constant freeze-out temperature and

no transverse 
ow. Soon the parameter b has been introduced [9] and it has been realized

that the transverse 
ow has to be non-relativistic at the saddle-point corresponding to the

13



maximum of the emission function. Yu. Sinyukov and collaborators classi�ed the various

classes of the ultra-relativistic transverse 
ows [8], [18], and introduced a parameter which

controls the transverse temperature pro�le, corresponding to the a 6= b = 0 case. We have

studied [20] the model-class a 6= 0, b 6= 0 , d = 0 which we extend here to the d 6= 0 case

too.

The integrals of the emission function are evaluated using the saddle-point method

[4,7,9]. The saddle-point coincides with the maximum of the emission function, parame-

terized by (�s; �s; rx;s; ry;s). These coordinate values solve simultaneously the equations

@S

@�

=
@S

@�

=
@S

@rx

=
@S

@ry

= 0 (48)

These saddle-point equations are solved in the LCMS, the longitudinally comoving system,

for �s(LCMS) << 1 and rx;s << �0. The approximations are self-consistent if j Y � y0 j<<

1 +��2mt=T0 and �t = pt=mt << (a2+ b2)=b. The transverse 
ow is non-relativistic at the

saddle-point if �t << (a2 + b2)=b2. We assume that �� < �0 so that the Fourier-integrals

involving H(� ) in the 0 � � < 1 domain can be extended to the �1 < � < 1 domain.

The radius parameters are evaluated here up the leading order in rx;s=�0. Thus terms of

O(rx;s=�0) are neglected, however we keep all the higher-order correction terms arising from

the non-vanishing value of �s in the LCMS.

We �nd that the saddle point approximation for the integrals leads to an e�ective emis-

sion function which can be factorized similarly to eq. (20), and the radius parameters are

just expressible in terms of the homogeneity lengths ���; R� and ���, and the position

of the saddle point �s which is in turn the cross-term generating hyperbolic mixing an-

gle. The saddle-point in LCMS is given by �s = �0; �s = (y0 � Y )=(1 + ��2(1=��2T � 1)),

rx;s = �tbR
2
�
=(�0��

2
T ) and ry;s = 0. The radius parameters or lengths of homogeneity are

given in the LCMS by eqs. (27-29,33-35), and we obtain

1

R2
�

=
1

R2
G

+
1

R2
T

cosh[�s] (49)
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1

��2
�

=
1

��2
+

1

��2T

cosh[�s]�
1

cosh2[�s]

; (50)

1

�� 2
�

=
1

�� 2
+

1

�� 2T

cosh2[�s]: (51)

where the thermal length-scales are given by

R2
T =

� 20

a2 + b2

T0

Mt

; (52)

��2T =
T0

Mt

; (53)

�� 2T =
� 20

d2

T0

Mt

: (54)

Here Mt =
q
K2

0 �K2
L is the transverse mass belonging to the mean momentum K. In the

region of the Bose-Einstein enhancement, where the relative momentum of the pair is small,

Mt satis�es Mt =
1

2
(mt;1 +mt;2)(1 +O(y1 � y2) +O((mt;1 �mt;2)=(mt;1 +mt;2))).

The parameters of the BECF-s are dominated by the smaller of the geometrical and

the thermal scales not only in the spatial directions but in the temporal direction too ac-

cording to eqs. (49-54). These analytic expressions indicate that the BECF views only a

part of the space-time volume of the expanding systems, which implies that even a com-

plete measurement of the parameters of the BECF as a function of the mean momentum

K may not be su�cient to determine uniquely the underlying phase-space distribution. We

also can see that the LCMS frame approximately coincides with the LSPS frame for pairs

with j y0 � Y j<< 1 +��2Mt=T0 and the terms arising from the non-vanishing values of �s

can be neglected. In this approximation, the cross-term generating hyperbolic mixing angle

�s � 0 thus we �nd the leading order LCMS result:

C(�k;K) = 1 + �� exp(�R
2
LQ

2
L �R2

sideQ
2
side �R2

outQ
2
out); (55)
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with a vanishing out-long cross-term, Rout;L = 0. To leading order, the parameters of the

correlation function are given by

R2
side = R2

�
; (56)

R2
out = R2

�
+ �2

T��
2
�
; (57)

R2
L = � 20��

2
�

(58)

Observe that the di�erence of the side and the out radius parameters is dominated by the

lifetime-parameter ���. Thus a vanishing di�erence between the R2
out and R2

side can be

generated dynamically in the case when the duration of the particle emission is large, but

the thermal duration ��T becomes su�ciently small. This in turn can be associated with

intensive changes in the local temperature distribution during the course of the particle

emission.

Please note, that the BECF in an arbitrary frame can be obtained from combining

eqs. (49-54) with the general expressions given by eqs. (27 - 32). In these equations, the

value of �s = Y +�LCMS
s = Y +(y0�Y )=(1+��2(1=��2T �1)) has to be used. Note that in

our results higher order terms arising from the non-vanishing value of �s in the LCMS are

summed up, while in refs. [9] the �rst sub-leading corrections were found.

Invariant momentum distributions The IMD plays a complementary role to the measured

Bose-Einstein correlation function [10,6,20]. Namely, the width of the rapidity distribution

at a given mt, �y(mt) as well as T�, the e�ective temperature at a mid-rapidity y0 shall be

dominated by the longer of the thermal and geometrical length-scales. Thus a simultaneous

analysis of the Bose-Einstein correlation functions and the IMD may reveal information both

on the temperature and 
ow pro�les and on the geometrical sizes.

E.g. the following relations hold:

�y(mt)
2 = ��2 +��2T (mt); and

1

T�

=
f

T0 + TG(mt = m)

+
1� f

T0

; (59)

where the geometrical contribution to the e�ective temperature is given by TG = T0R
2
G=R

2
T

and the fraction f is de�ned as f = b2=(a2 + b2), satisfying 0 � f � 1.
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For the considered model, the invariant momentum distribution can be calculated as

N1;c(p) =
g

(2�)3
exp

0
BB@
�0

T0

1
CCA mt (2���

2
�
� 20 )

1=2 (2�R2
�
)
���

��

cosh(�s) exp(+��2
�
=2) �

� exp

0
BB@�

(y � y0)
2

2(��2 +��2T )

1
CCA exp

0
BB@�

mt

T0

0
BB@1� f

�2
t

2

1
CCA

1
CCA exp

0
BB@�f

mt�
2
t

2(T0 + TG)

1
CCA : (60)

This IMD has a rich structure: it features both a rapidity-independent and a rapidity-

dependent low-pt enhancement as well as a high-pt enhancement or decrease. The measured

IMD can be obtained from the IMD of the core as given above and from the measured ��(p)

parameters as

N1(p) =
1

q
��(p)

N1;c(p); (61)

as has been presented e.g. in ref. ( [23]).

The invariant momentum distribution described by eq. 60 features two types of low

transverse momentum enhancement. The rapidity-independent low-pt enhancement is a con-

sequence of the transverse mass dependence of the e�ective volume, which particles with a

given momentum are emitted from. We may introduce the volume factor or V�(y;mt) which

yields the momentum-dependent size of the region, from where the particles with a given

momentum are emitted:

V�(y;mt) = (2���2
�
� 20 )

1=2(2�R2
�
)
���

��

: (62)

This e�ective volume may depend on mt for certain limiting cases in the following ways

V
�
(y;mt) /

0
BB@
T0

mt

1
CCA

k=2

(63)

where k = 0 for a static �reball (a = b = d = 0 and ��2T >> ��2), the case k = 1 is satis�ed

for a = b = d = 0 and �� >> ��2T see e.g. [6], the case k = 2 corresponds to a = b = 0 6= d
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and �� >> ��2T , describing longitudinally expanding systems with cooling, the case k = 3

corresponds to a 6= 0 , b 6= 0 = d i.e. three-dimensionally expanding, cylindrically symmetric,

�nite systems with transverse temperature pro�le, [20] and the k = 4 case corresponds to

the same appended with a d 6= 0 parameter describing the temporal changes in the local

temperature during the particle emission process appended with the condition ��T << �� .

Thus the inclusion of this e�ective mt dependent volume factor into the data analysis not

only would undoubtedly increase the precision of the measurements of the slope parameters,

but in turn it also could shed light on the dynamics of the particle emission from such

complex systems.

The rapidity-dependent low-pt enhancement, which is a generic property of the longitudi-

nally expanding �nite systems [24], reveals itself in the rapidity-dependence of the e�ective

temperature, de�ned as the slope of the exponential factors in the IMD in the low-pt limit

at a given value of the rapidity. The leading order [24] result is

Teff(y) =
T�

1 + a(y � y0)
2

with a =
T0T�

2m2

0
BB@��2 +

T0

m

1
CCA

�2

: (64)

Please note that the derivation of this e�ect relies on the assumption mt >> T0 in the

low transverse momentum region too. Thus it may be valid for kaons or heavier particles

as well as locally very cold pionic systems. However, in case of pions, the self-consistency

of the applied formulas and their region of validity, mt >> T0 has to be very carefully

checked. Note also that the low transverse momentum region is populated by a number of

resonance decays. For the long-lived resonances, thus a non-trivial 1=
q
��(p) factor may

appear and contribute to both the rapidity-dependent and the rapidity-independent low-pt

enhancement. Although this factor is measurable from the shape-analysis of the BECF, care

is required to extract the contribution of the decay products of short lived resonances to the

momentum distribution.

The high-pt enhancement or decrease refers to the change of the e�ective temperature

at mid-rapidity with increasing mt . The large transverse mass limit T1 shall be in general
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di�erent from the e�ective temperature at low pt given by T� since

T1 =
2T0

2� f

and
T1

T�

=
2

2� f

0
BB@1� f

TG(m)

T0 + TG(m)

1
CCA : (65)

Utilizing TG=T0 = R2
G=R

2
T , the high-pt enhancement or decrease turns out to be controlled

by the ratio of the thermal radius RT (mt = m) to the geometrical radius RG. One obtains

T1 > T� if R
2
T (m) > R2

G and similarly T1 < T� if R
2
T (m) < R2

G. Since for large colliding

nuclei RG is expected to increase, a possible high-pt decrease in these reactions may become

a geometrical e�ect, a consequence of the large size.

Limiting cases

Observe that both the thermal and the geometrical lenght-scales enter both the param-

eters of the Bose-Einstein correlation function and those of the invariant momentum dis-

tribution. Various limiting cases can be obtained as combinations of basically the relative

size of the thermal and the geometrical scales in the transverse, longitudinal and temporal

directions. These in turn are:

i) If RT (Mt) >> RG in a certain Mt interval, we have also T >> TG(mt) at the same

transverse mass scale. In this region, the side radius parameter shall be determined by the

geometrical size Rside = R� � RG, and this parameter becomes transverse mass independent.

The mt distribution at mid-rapidity shall be proportional to exp(�mt=T0).

ii) If ��T >> ��, we have RL = �0��, and the rapidity-width of the IMD shall be

dominated by the thermal scale, �2y(mt) = ��T = T=mt.

iii) If ��T >> �� , the temporal duration shall be measured by R2
out �R2

side = �2
t��

2.

The invariant momentum distribution shall be in
uenced only through the ���=�� � 1

factor in V�.

These cases are rather conventional limiting cases. An unconventional limit complements

each:

iv) If RT (Mt) << RG in a certain Mt interval, we have also T << TG(mt) at the same

transverse mass scale. In this region, the side radius parameter shall be determined by the
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thermal size Rside = R� � RT (Mt), and this parameter becomes transverse mass dependent,

R2
side / � 20T0=Mt.

The mt distribution at mid-rapidity shall be proportional to exp(�mt=T�). If a
2 << b2,

we have T� � TG(m) as follows from eq. (59).

v) If ��T << ��, we have the leading order LCMS result RL = �0��T = � 20T=Mt, and

the rapidity-width of the IMD shall be dominated by the geometrical scale, �2y � �2�.

vi) If ��T << �� , the thermal duration shall be measured by R2
out �R2

side = �2
t��

2
T �

�2
t �

2
0T0=(d

2Mt). For large values of the transverse mass, the model thus shall feature a

dynamically generated vanishing duration parameter, which has a speci�c transverse mass

dependence. The invariant momentum distribution shall be in
uenced only through the

���=�� � 1=
p
mt factor in V�.

Some combinations of cases i) { vi), are especially interesting, as:

vii) If all the �nite geometrical source sizes, RG;�� and �� are large compared to the

corresponding thermal length-scales we have

�� 2
�
= �� 2T

1

1 +
�� 2T

�� 2

�
� 20

d2

T0

Mt

(66)

R2
L � � 20

T0

Mt

(67)

R2
side �

� 20

a2 + b2

T0

Mt

(68)

Thus if d2 >> a2 + b2 � 1 the model features a dynamically generated vanishing di�erence

between the side and out radii.

If the vanishing duration parameter is generated dynamically, the model predicts an Mt

- scaling for the duration parameter as
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�� 2
�
=

R2
out �R2

side

�2
t

' �� 2T /
1

Mt

; (69)

Note that this prediction could be checked experimentally if the error bars of the measured

radius parameters were decreased to such a level that the di�erence between the out and

the side radius parameters would be signi�cant.

Alternatively, if the vanishing duration parameter of the BECF is generated due to a

very fast hadronization process as discussed in ref. [21], then one has

�� 2
�
' �� 2 / const; (70)

i.e. in this case the duration parameter becomes independent of the transverse mass.

If the �nite source sizes are large compared to the thermal length-scales and if we also

have a2 + b2 � 1, one obtains an Mt -scaling for the parameters of the BECF,

R2
side ' R2

out ' R2
L ' � 20

T0

Mt

; valid for �t <<
(a2 + b2)

b2
'

1

b2
: (71)

Note that this relation is independent of the particle type and has been seen in the recent

NA44 data [22]. This Mt-scaling may be valid to arbitrarily large transverse masses with

�t � 1 if b2 << 1. Thus, to generate vanishing di�erence between the side and out radius

and Mt-scaling simultaneously, the parameters have to satisfy b2 << a2+ b2 � 1 << d2, i.e.

the fastest process is the cooling, the next dominant process within this phenomenological

picture has to be the development of the transverse temperature pro�le and �nally the

transverse 
ow shall be relatively weak.

We would like to emphasize that there are a number of conditions in the model which

need to be satis�ed simultaneously to get the scaling behavior, which is supported by 9 high-

precision NA44 data-points (3 for kaons and 6 for pions). One has to wait for future data

points to learn more about the experimental status of the scaling. The model presented in

this paper may describe more complex transverse momentum dependences of the parameters

of the Bose-Einstein correlation function, too, the Mt-scaling is only one of its virtues in a
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speci�c limiting case. However, it is rather di�cult to get a limiting case with RL � Rside �

Rout / 1=
p
Mt in analytically solvable models. Such a behavior is related to the cylindrical

symmetry of the emission function. In the saddle-point approximation this means that the

saddle-point sits basically at rt = 0 with next to leading order corrections, in the transverse

momentum region where the scaling was observed.

Thus the symmetry of the BECF in LCMS is a strong indication for a three-dimensionally

expanding source, possibly with a temperature pro�le. The LCMS frame is selected if the

mean emission point or saddle-point is located not too far from the symmetry axis even

for particles with a large transverse mass, rx;s(mt) << �0 and if the �nite longitudinal size

introduces only small di�erence between the LCMS and LSPS frames, i.e. j y � y0 j<<

1+��2(mt=T � 1) . In the considered case the emission function is cylindrically symmetric

and so the BECF is symmetric in the LCMS of the pair ( and not in the center of mass

system of the pair). This picture is further supported by the similar Mt dependence of the

side, out and longitudinal components [25].

vii) It is interesting to investigate the other limiting case when RT >> RG;��T >> ��

and ��T >> �� . In this case we obtain

R2
L = � 20��

2 = R2
L;G; R2

side = R2
G; R2

out = R2
G + �2

T��
2; (72)

�y2 = ��2T =
T0

mt

; T� = T0: (73)

Thus, if the thermal length scales are larger than the geometrical sizes in all directions, the

BECF measurement determines the geometrical sizes properly, and the pt and the dn=dy

distribution will be determined by the temperature of the source. In this case the momentum

distribution will be given by

N1(p) / exp

0
BB@�

mt

T0

�
y2mt

2T0

1
CCA � exp

0
BB@�

E

T0

1
CCA ; (74)

which is just a thermal distribution for a static source.
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Thus two length-scales are present in all the three principal directions of three-

dimensionally expanding systems. The BECF radius parameters are dominated by the

shorter of the thermal and geometrical length scales. However, the rapidity-width of the

d2N=dy=dm2
t distribution, �

2y(mt) is the quadratic sum of the geometrical and the thermal

length scales, thus it is dominated by the longer of the two. Similarly, the e�ective tem-

perature is dominated by the higher of the two temperature scales for f � 1 according to

eq. (59). The e�ective temperature of the mt distribution is decreasing in the target and

projectile rapidity region.

In summary, we have presented model-independent formulation for the two-particle

Bose-Einstein correlation function for cylindrically symmetric systems undergoing collec-

tive hydrodynamical expansion. We have expressed these in the LAB, LCMS and LSPS

systems, where the functional form of the BECF becomes more and more simpli�ed. We

have identi�ed the cross-term generating hyperbolic mixing angle with the value of the �

variable of the saddle point in the considered frame.

We have also introduced a class of Gaussian models which in some regions of the model-

parameters may obey an Mt-scaling for the side, out and longitudinal radius parameters.

Vanishing e�ective duration of the particle emission may be generated by the temporal

changes of the local temperature during the evaporation. The model predicts an Mt-scaling

also for the duration parameter in this limiting case.

Finally we stress that both the invariant momentum distribution and the Bose-Einstein

correlation function may carry only partial information about the phase-space distribution

of particle emission. However, their simultaneous analysis may shed more light on the

dynamics and may reveal e.g. large hidden geometrical source-sizes.
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I. APPENDIX

In this appendix we give a simple example when the Fourier-transformed emission

function exists but the saddle-point method is not applicable. Let us consider the one-

dimensional Lorentzian distribution function

S(r) =
1

�R

1

(1 + r2=R2)

: (75)

Here r is a real variable (in one dimension). The corresponding correlation function is

C(q) = 1+ j ~S(q) j2; (76)

with

~S(q) =
Z
1

�1

dr S(r) exp(�iqr); (77)

which yields

C(q) = 1 + exp(�2 j q j R): (78)

This function is not analytic at q = 0 because it depends on the absolute value of q, and for

positive values of q its Taylor expansion starts with a linear term. This is to be contrasted

with the results for the saddle-point method. If the saddle-point method is applicable, then

~S(q) can be expanded into a Taylor series around q = 0 as

~S(q) = 1 + ihriq � hr2iq2=2 + ::: (79)

Here the average of a function of variable r is de�ned as

hf(r)i =
Z
1

�1

dr f(r)S(r) (80)

and the two-particle correlation function can be written as
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C(q) � 2 � q2R2
G � 1 + exp(�q2R2

G) (81)

with

R2
G = hr2i � hri2: (82)

Since for the considered function R2
G =1, the saddle{point method is not applicable. Still,

the Fourier-transformed emission function and the BECF exist, as given by eq. (78).

Cases similar to this are characterized by non-Gaussian correlation functions [14]. Similar

examples can be found among multi-variate distributions, too.
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