282 research outputs found

    Killing spinor space-times and constant-eigenvalue Killing tensors

    Full text link
    A class of Petrov type D Killing spinor space-times is presented, having the peculiar property that their conformal representants can only admit Killing tensors with constant eigenvalues.Comment: 11 pages, submitted to CQ

    Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures

    Get PDF
    Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials

    Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    Get PDF
    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed

    Laser-induced optical changes in amorphous multilayers

    Full text link
    It is shown that the well-known blue-shift of the fundamental absorption edge in as-deposited compositionally modulated amorphous Si/Ge and As6Se94/Se80Te20 multilayers (with periods of 4-8 nm) is further enhanced due to the thermal or laser-induced intermixing of adjacent layers. The laser-induced intermixing process, as supported by experiments and model calculations, can be attributed to both the local heating and photo-effects in As6Se94/Se80Te20 multilayers, while only the thermal effects were observed for Si/Ge multilayers. Structural transformations, based on this enhanced interdiffusion, provides good capability for spatially patterning optoelectronic devices and digital information recording
    corecore