27 research outputs found

    Economics of Water Security

    Get PDF
    In the immediate future, accessible runoff of fresh water is unlikely to increase more than the demand forecasted. It will have an impact on economic growth as it may reduce the per capita income of countries and create water conflicts. Such global threat creates a policy conundrum of how to meet basic needs and maximise the benefits from water resources. This chapter investigates different economic instruments in alleviating water-related risks and dealt with associated impacts.Anik Bhaduri, C. Dionisio PĂ©rez-Blanco, Dolores Rey, Sayed Iftekhar, Aditya Kaushik, Alvar Escriva-Bou, Javier Calatrava, David Adamson, Sara Palomo-Hierro, Kelly Jones, Heidi Asbjornsen, MĂłnica A. Altamirano, Elena Lopez-Gunn, Maksym Polyakov, Mahsa Motlagh, and Maksud Bekchano

    Ecosystem services in the water-energy-food nexus

    No full text
    Given their substantial societal benefits, such as supporting economic activities and providing better livelihoods in rural areas, ecosystem services should gain higher importance in water-food-energy nexus debates. Yet, not all values from ecosystems are quantifiable, data is often not adequate and methods of measuring these values are not sound. This situation challenges researchers and water managers to improve research tools and give adequate attention to ecosystem services by implementing interdisciplinary approaches and integrated management of ecosystems and their services

    Review of hydro-economic models to address river basin management problems: structure, applications and research gaps

    No full text
    Across the globe, the prospect of increasing water demands coupled with the potential for reduced water availability is calling for implementation of a range of technological, institutional, and economic instruments to address growing water scarcity. Hydro-economic models (HEMs), which integrate the complex hydrologic and economic interrelationships inherent in most water resources systems, provide an effective means of diagnosing and devising solutions to water-related problems across varied spatial and temporal scales. This study reviews recent advances in hydro-economic modeling and characterizes the types of issues that are typically explored in the hydro-economic modeling literature. Our findings suggest that additional efforts are needed to more realistically account for the range and complexity of interlinkages between water systems and society, particularly with regards to ecology and water quality, and the food and energy sectors. Additionally, the forces that depend on water and operate on the broader economy, for example in interregional trade should be investigated further. Moreover, effects on the distribution of income within countries, and on migration should be considered in basin management modeling studies

    How would the Rogun Dam affect water and energy scarcity in Central Asia?

    No full text
    The construction of the Rogun Dam in the Amu Darya Basin to increase upstream energy generation creates potential trade-offs with existing downstream irrigation, due to the different timing of energy and irrigation water demands. The present analysis, based on a hydro-economic optimization model, shows that cooperative basin-wide maximization of benefits would lead to large increases in upstream hydropower production and only minor changes in downstream irrigation benefits. However, if upstream stations, including Rogun, are managed unilaterally to maximize energy production, hydropower benefits might more than double while irrigation benefits greatly decrease, thereby substantially reducing overall basin benefits

    Sorption of copper (II), nickel (II) and cobalt (II) ions into the ionite modified by polyphinylchloride and polyethylene polyamine

    Get PDF
    IPolyphinylchloride was modified by polyethylene polyamine, and the ionites were studied in static conditions by the artificial solution of copper (II), nickel (II) and cobalt (II) ions. In static conditions, factors affecting the sorption process, such as time, temperature and concentration dependence were investigated. The results of the inquiry process were studied by IR analysi

    Integrating input-output modeling with multi-criteria analysis to assess options for sustainable economic transformation: the case of Uzbekistan

    No full text
    Integrating economic efficiency and environmental sustainability indicators is essential for designing policies for a sustainable development. Given the growing pressure on water resources, efficient water use becomes an essential environmental criteria for formulating adjustment reforms. Despite the wide use of backward and forward linkages as well as direct and indirect resource (energy, water, etc.) uses based on environmentally extended input-output models for assessing the performance of economic sectors, the common practice of presenting different indicators separately obstructed a straightforward policy interpretation of results. To derive a composite indicator that allows to direct ranking of sectors, we combined therefore a direct and indirect water use intensities with backward and forward linkage indexes by using the multi-criteria analysis method-TOPSIS (Technique for order preference by similarity to ideal solution). The model was implemented to formulate sectoral transformation measures guided by sustainable growth objectives in Uzbekistan, Central Asia, which is a representative of an area with growing water scarcity. The results showed that the presently promoted crops under the state order system—cotton and wheat—and crop preferred by farmers— rice—are the least effective production options for reaching such a sustainable growth. It is argued therefore that unbiased support for all crops through adaption of the current state order system for cotton and wheat cultivation is needed to achieve a more diversified crop portfolio with an increased share of fruits and vegetables. A further development of agro-processing industries and livestock sector bears more potential for sustainable economic development than a further promotion of producing raw agricultural commodities. Investing in industrial sectors illustrated more potential than in agriculture related sectors when aiming at economic effectiveness and increased water use efficiency. It is concluded that, with a relevant sectoral transformation, Uzbekistan has high opportunities to cope with reduced water availability

    Optimizing irrigation efficiency improvements in the Aral Sea Basin

    No full text
    Water scarcity driven by climate change, growing demand, and inefficient management of water and related infrastructure is a serious threat to livelihoods in the Aral Sea Basin (ASB) of Central Asia. In recent decades, downstream water shortages have become increasingly common and inflows into the Aral Sea have become very limited. Meanwhile, water losses are enormous both at conveyance and field levels because of outdated infrastructure and the dominance of highly inefficient basin and furrow irrigation methods. Intensification and modernization of irrigation systems, while requiring investment of scarce capital resources, could thus substantially reduce non-beneficial water consumption and help in coping with increasing water scarcity. This study applies a hydro-economic model that solves for the investment in improved irrigation efficiency across the various irrigation sites in the ASB that delivers the highest economic gains. Improvement of the efficiency of irrigation canals and implementation of field efficiency investments and practices, such as drip irrigation, and alternate dry or short furrow irrigation (for rice), would substantially improve economic outcomes. Conveyance efficiency investments are particularly worthwhile in downstream regions where sandy soils are common and return flows largely feed saline lakes in tail-end depressions. Meanwhile, field-level efficiency should be fully upgraded in all rice-producing regions through the use of drip and alternate wet and dry irrigation, as well as with drip irrigation in the cotton-producing Ferghana Valley of the Syr Darya Basin. The value of these improvements increases with reduced water availability. Implementation of an optimal set of investments could increase basinwide benefits by 20% (from US3.2to3.8billion)undernormalwateravailabilityandby40 3.2 to 3.8 billion) under normal water availability and by 40% (from US 2.5 to 3.5 billion) under dry conditions (80% of normal supply)
    corecore