1,775 research outputs found

    Target Zones and Exchange Rates: An Empirical Investigation

    Get PDF
    In this paper we develop an empirical model of exchange rates in a target zone. The model is general enough to nest most theoretical and empirical models in the existing literature. We find evidence of two types of jumps in exchange rates. Realignment jumps are those that are associated with the periodic realignments of the target zone and within-the-band jumps are those that can be accommodated within the current target zone. The exchange rate may jump outside the current target zone band, in the case of a realignment, but when no jump occurs the target zone is credible (there is zero probability of a realignment) and the exchange rate must stay within the band. We incorporate jumps, in general, by conditioning the distribution of exchange rate changes on a jump variable where the probability and size of a jump vary over time as a function of financial and macroeconomic variables. With this more general model, we revisit the empirical evidence from the European Monetary System regarding the conditional distribution of exchange rate changes, the credibility of the system, and the size of the foreign exchange risk premia. In contrast to some previous findings, we conclude that the FF/DM rate exhibits considerable non-linearities, realignments are predictable and the credibility of the system did not increase after 1987. Moreover, our model implies that the foreign exchange risk premium becomes large during speculative crises. A comparison with the Deutschemark/Dollar rate suggests that an explicit target zone does have a noticeable effect on the time-series behavior of exchange rates.

    Current Exchanges for Reducible Higher Spin Multiplets and Gauge Fixing

    Get PDF
    We compute the current exchanges between triplets of higher spin fields which describe reducible representations of the Poincare group. Through this computation we can extract the propagator of the reducible higher spin fields which compose the triplet. We show how to decompose the triplet fields into irreducible HS fields which obey Fronsdal equations, and how to compute the current-current interaction for the cubic couplings which appear in ArXiv:0708.1399 [hep-th] using the decomposition into irreducible modes. We compare this result with the same computation using a gauge fixed (Feynman) version of the triplet Lagrangian which allows us to write very simple HS propagators for the triplet fields.Comment: 26 pages, 1 table; v3 some clarifications and references added, typos corrected. Published versio

    Gauge fields and infinite chains of dualities

    Get PDF
    We show that the particle states of Maxwell's theory, in DD dimensions, can be represented in an infinite number of ways by using different gauge fields. Using this result we formulate the dynamics in terms of an infinite set of duality relations which are first order in space-time derivatives. We derive a similar result for the three form in eleven dimensions where such a possibility was first observed in the context of E11. We also give an action formulation for some of the gauge fields. In this paper we give a pedagogical account of the Lorentz and gauge covariant formulation of the irreducible representations of the Poincar\'e group, used previously in higher spin theories, as this plays a key role in our constructions. It is clear that our results can be generalised to any particle.Comment: 37 page

    Detours and Paths: BRST Complexes and Worldline Formalism

    Get PDF
    We construct detour complexes from the BRST quantization of worldline diffeomorphism invariant systems. This yields a method to efficiently extract physical quantum field theories from particle models with first class constraint algebras. As an example, we show how to obtain the Maxwell detour complex by gauging N=2 supersymmetric quantum mechanics in curved space. Then we concentrate on first class algebras belonging to a class of recently introduced orthosymplectic quantum mechanical models and give generating functions for detour complexes describing higher spins of arbitrary symmetry types. The first quantized approach facilitates quantum calculations and we employ it to compute the number of physical degrees of freedom associated to the second quantized, field theoretical actions.Comment: 1+35 pages, 1 figure; typos corrected and references added, published versio

    A note on spin-s duality

    Full text link
    Duality is investigated for higher spin (s≥2s \geq 2), free, massless, bosonic gauge fields. We show how the dual formulations can be derived from a common "parent", first-order action. This goes beyond most of the previous treatments where higher-spin duality was investigated at the level of the equations of motion only. In D=4 spacetime dimensions, the dual theories turn out to be described by the same Pauli-Fierz (s=2) or Fronsdal (s≥3s \geq 3) action (as it is the case for spin 1). In the particular s=2 D=5 case, the Pauli-Fierz action and the Curtright action are shown to be related through duality. A crucial ingredient of the analysis is given by the first-order, gauge-like, reformulation of higher spin theories due to Vasiliev.Comment: Minor corrections, reference adde

    Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions

    Get PDF
    Cubic couplings between a complex scalar field and a tower of symmetric tensor gauge fields of all ranks are investigated on any constant curvature spacetime of dimension d>2. Following Noether's method, the gauge fields interact with the scalar field via minimal coupling to the conserved currents. A symmetric conserved current, bilinear in the scalar field and containing up to r derivatives, is obtained for any rank r from its flat spacetime counterpart in dimension d+1, via a radial dimensional reduction valid precisely for the mass-square domain of unitarity in (anti) de Sitter spacetime of dimension d. The infinite collection of conserved currents and cubic vertices are summarized in a compact form by making use of generating functions and of the Weyl/Wigner quantization on constant curvature spaces.Comment: 35+1 pages, v2: two references added, typos corrected, enlarged discussions in Subsection 5.2 and in Conclusion, to appear in JHE

    Higher spin fields from a worldline perspective

    Get PDF
    Higher spin fields in four dimensions, and more generally conformal fields in arbitrary dimensions, can be described by spinning particle models with a gauged SO(N) extended supergravity on the worldline. We consider here the one-loop quantization of these models by studying the corresponding partition function on the one-dimensional torus. After gauge fixing the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which is computed using orthogonal polynomial techniques. We obtain a compact formula which gives the number of physical degrees of freedom for all N in all dimensions. As an aside we compute the physical degrees of freedom of the SO(4) = SU(2)xSU(2) model with only a SU(2) factor gauged, which has attracted some interest in the literature.Comment: 21 page

    Spin three gauge theory revisited

    Full text link
    We study the problem of consistent interactions for spin-3 gauge fields in flat spacetime of arbitrary dimension n>3. Under the sole assumptions of Poincar\'e and parity invariance, local and perturbative deformation of the free theory, we determine all nontrivial consistent deformations of the abelian gauge algebra and classify the corresponding deformations of the quadratic action, at first order in the deformation parameter. We prove that all such vertices are cubic, contain a total of either three or five derivatives and are uniquely characterized by a rank-three constant tensor (an internal algebra structure constant). The covariant cubic vertex containing three derivatives is the vertex discovered by Berends, Burgers and van Dam, which however leads to inconsistencies at second order in the deformation parameter. In dimensions n>4 and for a completely antisymmetric structure constant tensor, another covariant cubic vertex exists, which contains five derivatives and passes the consistency test where the previous vertex failed.Comment: LaTeX, 37 pages. References and comments added. Published versio

    Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism

    Full text link
    We present some generalities of unfolded on-shell dynamics that are useful in analysing the BMV conjecture for mixed-symmetry fields in constantly curved backgrounds. In particular we classify the Lorentz-covariant Harish-Chandra modules generated from primary Weyl tensors of arbitrary mass and shape, and in backgrounds with general values of the cosmological constant. We also discuss the unfolded notion of local degrees of freedom in theories with and without gravity and with and without massive deformation parameters, using the language of Weyl zero-form modules and their duals.Comment: Corrected typos, references added, two figures, some remarks and two subsections added for clarit
    • …
    corecore