831 research outputs found

    Near-infrared photometry of WISE J085510.74-071442.5

    Get PDF
    Indexación: Web of ScienceAims. We aim at obtaining near-infrared photometry and deriving the mass, age, temperature, and surface gravity of WISE J085510.74 071442.5 (J0855 0714), which is the coolest object beyond the solar system currently known. Methods. We used publicly available data from the archives of the Hubble Space Telescope (HST) and the Very Large Telescope (VLT) to determine the emission of this source at 1.153 mu m (F110W) and 1.575 mu m (CH4-o ff). J0855 0714 was detected at both wavelengths with a signal-to-noise ratio of approximate to 10 (F110W) and approximate to 4 (CH4-off) at the peak of the corresponding point-spread-functions. Results. This is the first detection of J0855 0714 in the H-band wavelengths. We measured 26.31 +/- 0.10 and 23.22 +/- 0.35 mag in F110W and CH4-o ff (Vega system). J0855 0714 remains unresolved in the HST images that have a spatial resolution of 0.22 0 0. Companions at separations of 0.5 AU (similar mass and brightness) and at similar to 1 AU approximate to 1 mag fainter in the F110W filter) are discarded. By combining the new data with published photometry, including non-detections, we build the spectral energy distribution of J0855 0714 from 0.89 through 22.09 mu m, and contrast it against current solar-metallicity models of planetary atmospheres. We determine that the best spectral fit yields a temperature of 225 250 K, a bolometric luminosity of log L/L-circle dot = 8 : 57, and a high surface gravity of log g = 5 : 0 (cm s(2)), which suggests an old age although a gravity this high is not fully compatible with evolutionary models. After comparing our data with the cooling theory for brown dwarfs and planets, we infer a mass in the interval 2 10 MJup for ages of 1 12 Gyr and high atmospheric gravities of log g greater than or similar to 3.5 (cm s(2)). If it had the age of the Sun, J0855 0714 would be a approximate to 5-M-Jup free-floating planetary-mass object. Conclusions. J0855 0714 meets the mass values previously determined for free-floating planetary-mass objects discovered in starforming regions and young stellar clusters. Based on extrapolations of the substellar mass functions of young clusters to the field, as many J0855 0714-like objects as M5-L2 stars may be expected to populate the solar neighborhood.http://www.aanda.org/articles/aa/pdf/2016/08/aa28662-16.pd

    2MASS J154043.42-510135.7: a new addition to the 5 pc population

    Full text link
    The aim of the project is to find the stars nearest to the Sun and to contribute to the completion of the stellar and substellar census of the solar neighbourhood. We identified a new late-M dwarf within 5 pc, looking for high proper motion sources in the 2MASS-WISE cross-match. We collected astrometric and photometric data available from public large-scale surveys. We complemented this information with low-resolution optical and near-infrared spectroscopy with instrumentation on the ESO NTT to confirm the nature of our candidate. We also present a high-quality medium-resolution VLT/X-shooter spectrum covering the 400 to 2500 nm wavelength range. We classify this new neighbour as an M7.0±\pm0.5 dwarf using spectral templates from the Sloan Digital Sky Survey and spectral indices. Lithium absorption at 670.8 nm is not detected in the X-shooter spectrum, indicating that the M7 dwarf is older than 600 Myr and more massive than 0.06 M_{\odot}. We also derive a trigonometric distance of 4.4 pc, in agreement with the spectroscopic distance estimate, making 2MASS\,J154043.42-510135.7 the nearest M7 dwarf to the Sun. This trigonometric distance is somewhat closer than the \sim6 pc distance reported by the ALLWISE team, who independently identified this object recently. This discovery represents an increase of 25\% in the number of M7--M8 dwarfs already known at distances closer than 8\,pc from our Sun. We derive a density of ρ\rho\,=\,1.9±\pm0.9×\times103^{-3}\,pc3^{-3} for M7 dwarfs in the 8 pc volume, a value similar to those quoted in the literature. This new ultracool dwarf is among the 50 nearest systems to the Sun, demonstrating that our current knowledge of the stellar census within the 5 pc sample remains incomplete. 2M1540 represents a unique opportunity to search for extrasolar planets around ultracool dwarfs due to its proximity and brightness.Comment: 8 pages, 5 figures. Acepted in Astronomy & Astrophysics (15/05/2005

    Discovery of a wide companion near the deuterium burning mass limit in the Upper Scorpius association

    Get PDF
    We present the discovery of a companion near the deuterium burning mass limit located at a very wide distance, at an angular separation of 4.6+/-0.1 arcsec (projected distance of ~ 670 AU) from UScoCTIO108, a brown dwarf of the very young Upper Scorpius association. Optical and near-infrared photometry and spectroscopy confirm the cool nature of both objects, with spectral types of M7 and M9.5, respectively, and that they are bona fide members of the association, showing low gravity and features of youth. Their masses, estimated from the comparison of their bolometric luminosities and theoretical models for the age range of the association, are 60+/-20 and 14^{+2}_{-8} MJup, respectively. The existence of this object around a brown dwarf at this wide orbit suggests that the companion is unlikely to have formed in a disk based on current planet formation models. Because this system is rather weakly bound, they did not probably form through dynamical ejection of stellar embryos.Comment: 10 pages, including 4 figures and 2 table

    Spin-polarized current oscillations in diluted magnetic semiconductor multiple quantum wells

    Full text link
    We study the spin and charge dynamics of electrons in n-doped II--VI semiconductor multiple quantum wells when one or more quantum wells are doped with Mn. The interplay between strongly nonlinear inter-well charge transport and the large tunable spin-splitting induced by exchange interactions with spin-polarized Mn ions produces interesting new spin dependent features. The tunneling current between quantum wells can be strongly spin polarized and, under certain conditions, can develop self sustained oscillations under a finite dc voltage. The spin polarization oscillates in both magnetic and nonmagnetic quantum wells and the time average in magnetic wells can differ from its zero-voltage value. Our numerical simulations demonstrate that the amplitude of the spin polarization oscillations depends on the distribution of magnetic wells within the sample. We discuss how the spin polarized current and the spin polarization of the quantum wells can be tailored experimentally.Comment: 5 pages, 5 figures; to be published in Phys. Rev.

    Electric dipole rovibrational transitions in HD molecule

    Full text link
    The rovibrational electric dipole transitions in the ground electronic state of the HD molecule are studied. A simple, yet rigorous formula is derived for the transition rates in terms of the electric dipole moment function D(R)D(R), which is calculated in a wide range of RR. Our numerical results for transition rates are in moderate agreement with experiments and previous calculations, but are at least an order of magnitude more accurate.Comment: 7 pages, 1 figur

    Temporal changes of the flare activity of Proxima Cen

    Full text link
    We study temporal variations of the emission lines of Halpha, Hepsilon, H and K Ca II, D1 and D2 Na I, 4026 and 5876 A He I in the HARPS spectra of Proxima Centauri across an extended time of 13.2 years, from May 27, 2004, to September 30, 2017. Aims. We analyse the common behaviour and differences in the intensities and profiles of different emission lines in flare and quiet modes of Proxima activity. Methods. We compare the pseudo-equivalent widths (pEW) and profiles of the emission lines in the HARPS high-resolution (R ~ 115,000) spectra observed at the same epochs. Results. All emission lines show variability with a timescale of at least 10 min. The strength of all lines except He I 4026 A correlate with \Halpha. During strong flares the `red asymmetry' appears in the Halpha emission line indicating the infall of hot condensed matter into the chromosphere with velocities greater than 100 km/s disturbing chromospheric layers. As a result, the strength of the Ca II lines anti-correlates with Halpha during strong flares. The He I lines at 4026 and 5876 A appear in the strong flares. The cores of D1 and D2 Na I lines are also seen in emission. During the minimum activity of Proxima Centauri, Ca II lines and Hepsilon almost disappear while the blue part of the Na I emission lines is affected by the absorption in the extending and condensing flows. Conclusions. We see different behaviour of emission lines formed in the flare regions and chromosphere. Chromosphere layers of Proxima Cen are likely heated by the flare events; these layers are cooled in the `non-flare' mode. The self-absorption structures in cores of our emission lines vary with time due to the presence of a complicated system of inward and outward matter flows in the absorbing layers.Comment: 22 pages, 12 Figures, accepted by A

    Optical Linear Polarization of Late M- and L-Type Dwarfs

    Full text link
    (Abridged). We report on the linear polarimetric observations in the Johnson I filter of 44 M6-L7.5 ultracool dwarfs (2800-1400 K). Eleven (10 L and 1 M) dwarfs appear to have significant linear polarization (P = 0.2-2.5%). We have compared the M- and L-dwarf populations finding evidence for a larger frequency of high I-band polarization in the coolest objects, supporting the presence of significant amounts of dust in L-dwarfs. The probable polarizing mechanism is related to the presence of heterogeneous dust clouds nonuniformly distributed across the visible photospheres and the asymmetric shape of the objects. In some young ultracool dwarfs, surrounding dusty disks may also yield polarization. For polarimetric detections, a trend for slightly larger polarization from L0 to L6.5 may be present in our data, suggesting changes in the distribution of the grain properties, vertical height of the clouds, metallicity, age, and rotation speed. One of our targets is the peculiar brown dwarf (BD) 2MASS J2244+20 (L6.5), which shows the largest I-band polarization degree. Its origin may lie in a surrounding dusty disk or rather large photospheric dust grains. The M7 young BD CFHT-BD-Tau 4 and the L3.5 field dwarf 2MASS J0036+18 were also observed in the Johnson R filter. Our data support the presence of a circum(sub)stellar disk around the young accreting BD. Our data also support a grain growth in the submicron regime in the visible photosphere of J0036+18 (1900 K). The polarimetric data do not obviously correlate with activity or projected rotational velocity. Three polarized early- to mid-L dwarfs display I-band light curves with amplitudes below 10 mmag.Comment: Accepted for publication in ApJ (March 2005), 35 pages, 5 figure

    The CARMENES search for exoplanets around M dwarfs - Photospheric parameters of target stars from high-resolution spectroscopy

    Full text link
    The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2 method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results
    corecore