207 research outputs found

    Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study.

    Get PDF
    ObjectiveDiabetic and prediabtic states, including insulin resistance, fasting hyperglycemia, and hyperinsulinemia, are associated with metabolic dysregulation. These components have been individually linked to increased risks of cognitive decline and Alzheimer's disease. We aimed to comprehensively relate all of the components of metabolic dysregulation to cognitive function and brain magnetic resonance imaging (MRI) in middle-aged adults.Research design and methodsFramingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998-2001) constituted our study sample (n = 2,439; 1,311 women; age 61 Ā± 9 years). We related diabetes, homeostasis model assessment of insulin resistance (HOMA-IR), fasting insulin, and glycohemoglobin levels to cross-sectional MRI measures of total cerebral brain volume (TCBV) and hippocampal volume and to verbal and visuospatial memory and executive function. We serially adjusted for age, sex, and education alone (model A), additionally for other vascular risk factors (model B), and finally, with the inclusion of apolipoprotein E-Īµ4, plasma homocysteine, C-reactive protein, and interleukin-6 (model C).ResultsWe observed an inverse association between all indices of metabolic dysfunction and TCBV in all models (P < 0.030). The observed difference in TCBV between participants with and without diabetes was equivalent to approximately 6 years of chronologic aging. Diabetes and elevated glycohemoglobin, HOMA-IR, and fasting insulin were related to poorer executive function scores (P < 0.038), whereas only HOMA-IR and fasting insulin were inversely related to visuospatial memory (P < 0.007).ConclusionsMetabolic dysregulation, especially insulin resistance, was associated with lower brain volumes and executive function in a large, relatively healthy, middle-aged, community-based cohort

    Genetic Correlates of Brain Aging on MRI and Cognitive Test Measures: A Genome-Wide Association and Linkage Analysis in the Framingham Study

    Get PDF
    BACKGROUND: Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample. METHODS: A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and cognitive testing (1999ā€“2002) were genotyped. We used linear models adjusting for first degree relationships via generalized estimating equations (GEE) and family based association tests (FBAT) in additive models to relate qualifying single nucleotide polymorphisms (SNPs, 70,987 autosomal on Affymetrix 100K Human Gene Chip with minor allele frequency ā‰„ 0.10, genotypic call rate ā‰„ 0.80, and Hardy-Weinberg equilibrium p-value ā‰„ 0.001) to multivariable-adjusted residuals of 9 MRI measures including total cerebral brain (TCBV), lobar, ventricular and white matter hyperintensity (WMH) volumes, and 6 cognitive factors/tests assessing verbal and visuospatial memory, visual scanning and motor speed, reading, abstract reasoning and naming. We determined multipoint identity-by-descent utilizing 10,592 informative SNPs and 613 short tandem repeats and used variance component analyses to compute LOD scores. RESULTS: The strongest gene-phenotype association in FBAT analyses was between SORL1 (rs1131497; p = 3.2 Ɨ 10-6) and abstract reasoning, and in GEE analyses between CDH4 (rs1970546; p = 3.7 Ɨ 10-8) and TCBV. SORL1 plays a role in amyloid precursor protein processing and has been associated with the risk of AD. Among the 50 strongest associations (25 each by GEE and FBAT) were other biologically interesting genes. Polymorphisms within 28 of 163 candidate genes for stroke, AD and memory impairment were associated with the endophenotypes studied at p < 0.001. We confirmed our previously reported linkage of WMH on chromosome 4 and describe linkage of reading performance to a marker on chromosome 18 (GATA11A06), previously linked to dyslexia (LOD scores = 2.2 and 5.1). CONCLUSION: Our results suggest that genes associated with clinical neurological disease also have detectable effects on subclinical phenotypes. These hypothesis generating data illustrate the use of an unbiased approach to discover novel pathways that may be involved in brain aging, and could be used to replicate observations made in other studies.National Institutes of Health National Center for Research Resources Shared Instrumentation grant (ISI0RR163736-01A1); National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195); National Institute of Aging (5R01-AG08122, 5R01-AG16495); National Institute of Neurological Disorders and Stroke (5R01-NS17950

    New Norms for a New Generation: Cognitive Performance in the Framingham Offspring Cohort

    Get PDF
    A previous publication presented normative data on neuropsychological tests stratified by age, gender, and education based on the Original Cohort of the Framingham Heart Study. Many contemporary investigations include subject samples with higher levels of education, a factor known to affect cognitive performance. Secular change in education prompted the reexamination of norms in the children of the Original Cohort. The study population consisted of 853 men and 988 women from the Offspring Study, free of clinical neurological disease, who underwent a neuropsychological examination, which included tests given to their parents in 1974 to 1976 as well as additional newer tests to provide a more comprehensive battery. The Offspring population overall was more evenly distributed by gender and better educated. Their performance on cognitive tests was superior to that of the Original Cohort. Multivariable analyses revealed that more years of education explained only a part of the cohort differences. These findings suggest that continued surveillance of each generation is necessary to document the impact that unique social and economic variables have on cognitive function. Here, the authors provide updated normative data

    Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia

    Get PDF
    Objective: Type 2 diabetes confers a greater excess risk of cardiovascular disease in women than in men. Diabetes is also a risk factor for dementia, but whether the association is similar in women and men remains unknown. We performed a meta-analysis of unpublished data to estimate the sex-specific relationship between women and men with diabetes with incident dementia. Research design and methods: A systematic search identified studies published prior to November 2014 that had reported on the prospective association between diabetes and dementia. Study authors contributed unpublished sex-specific relative risks (RRs) and 95% CIs on the association between diabetes and all dementia and its subtypes. Sex-specific RRs and the women-to-men ratio of RRs (RRRs) were pooled using random-effects meta-analyses. Results: Study-level data from 14 studies, 2,310,330 individuals, and 102,174 dementia case patients were included. In multiple-adjusted analyses, diabetes was associated with a 60% increased risk of any dementia in both sexes (women: pooled RR 1.62 [95% CI 1.45-1.80]; men: pooled RR 1.58 [95% CI 1.38-1.81]). The diabetes-associated RRs for vascular dementia were 2.34 (95% CI 1.86-2.94) in women and 1.73 (95% CI 1.61-1.85) in men, and for nonvascular dementia, the RRs were 1.53 (95% CI 1.35-1.73) in women and 1.49 (95% CI 1.31-1.69) in men. Overall, women with diabetes had a 19% greater risk for the development of vascular dementia than men (multiple-adjusted RRR 1.19 [95% CI 1.08-1.30]; P \u3c 0.001). Conclusions: Individuals with type 2 diabetes are at āˆ¼60% greater risk for the development of dementia compared with those without diabetes. For vascular dementia, but not for nonvascular dementia, the additional risk is greater in women

    Bone mineral density and the risk of incident dementia:A meta-analysis

    Get PDF
    Background:Ā It is not known whether bone mineral density (BMD) measured at baseline or as the rate of decline prior to baseline (prior bone loss) is a stronger predictor of incident dementia or Alzheimer's disease (AD).Ā Methods:We performed a meta-analysis of three longitudinal studies, the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Rush Memory and Aging Project (MAP), modeling the time to diagnosis of dementia as a function of BMD measures accounting for covariates. We included individuals with one or two BMD assessments, aged ā‰„60 years, and free of dementia at baseline with follow-up available. BMD was measured at the hip femoral neck using dual-energy X-ray absorptiometry (DXA), or at the heel calcaneus using quantitative ultrasound to calculate estimated BMD (eBMD). BMD at study baseline (ā€œbaseline BMDā€) and annualized percentage change in BMD prior to baseline (ā€œprior bone lossā€) were included as continuous measures. The primary outcome was incident dementia diagnosis within 10 years of baseline, and incident AD was a secondary outcome. Baseline covariates included age, sex, body mass index, ApoE4 genotype, and education.Ā Results:Ā The combined sample size across all three studies was 4431 with 606 incident dementia diagnoses, 498 of which were AD. A meta-analysis of baseline BMD across three studies showed higher BMD to have a significant protective association with incident dementia with a hazard ratio of 0.47 (95% CI: 0.23ā€“0.96; p = 0.038) per increase in g/cm2, or 0.91 (95% CI: 0.84ā€“0.995) per standard deviation increase. We observed a significant association between prior bone loss and incident dementia with a hazard ratio of 1.30 (95% CI: 1.12ā€“1.51; p &lt; 0.001) per percent increase in prior bone loss only in the FHS cohort.Ā Conclusions:Ā Baseline BMD but not prior bone loss was associated with incident dementia in a meta-analysis across three studies.</p

    Lexical retrieval in discourse: An early indicator of Alzheimerā€™s dementia

    Full text link
    We examined the progression of lexical-retrieval deficits in individuals with neuropathologically determined Alzheimerā€™s disease (AD; n=23) and a comparison group without criteria for AD (n=24) to determine whether linguistic changes were a significant marker of the disease. Our participants underwent multiple administrations of a neuropsychological battery, with initial administration occurring on average 16 years prior to death. The battery included the Boston Naming Test (BNT), a letter fluency task (FAS) and written description of the Cookie Theft Picture (CTP). Repeated measures analysis revealed that the AD-group showed progressively greater decline in FAS and CTP lexical performance than the comparison group. Crosssectional time-specific group comparisons indicated that the CTP differentiated performance between the two groups at 7ā€“9 years prior to death and FAS and BNT only at 2ā€“4 years. These results suggest that lexical retrieval deficits in written discourse serve as an early indicator of AD

    Circulating Monocyte Chemoattractant Protein-1 and Risk of Stroke: A Meta-Analysis of Population-Based Studies Involving 17,180 Individuals.

    Get PDF
    RATIONALE: Pro-inflammatory cytokines have been identified as potential targets for lowering vascular risk. Experimental evidence and Mendelian randomization suggest a role of monocyte-chemoattractant protein-1 (MCP-1) in atherosclerosis and stroke. However, data from large-scale observational studies are lacking. OBJECTIVE: To determine whether circulating levels of MCP-1 are associated with risk of incident stroke in the general population. METHODS AND RESULTS: We used previously unpublished data on 17,180 stroke-free individuals (mean age 56.7{plus minus}8.1 years; 48.8% males) from six population-based prospective cohort studies and explored associations between baseline circulating MCP-1 levels and risk of any stroke, ischemic stroke, and hemorrhagic stroke over a mean follow-up interval of 16.3 years (280,522 person-years at risk; 1,435 incident stroke events). We applied Cox proportional hazard models and pooled hazard ratios (HR) using random-effects meta-analyses. Following adjustments for age, sex, race, and vascular risk factors, higher MCP-1 levels were associated with increased risk of any stroke (HR per 1 SD increment in ln-transformed MCP-1: 1.07, 95%CI: 1.01-1.14). Focusing on stroke subtypes, we found a significant association between baseline MCP-1 levels and higher risk of ischemic stroke (HR: 1.11, [1.02-1.21]), but not hemorrhagic stroke (HR: 1.02, [0.82-1.29]). The results followed a dose-response pattern with a higher risk of ischemic stroke among individuals in the upper quartiles of MCP-1 levels as compared to the 1st quartile (HRs: 2nd quartile: 1.19 [1.00-1.42]; 3rd quartile: 1.35, [1.14-1.59]; 4th quartile: 1.38, [1.07-1.77]). There was no indication for heterogeneity across studies and in a sub-sample of four studies (12,516 individuals) the risk estimates were stable after additional adjustments for circulating levels of interleukin-6 and high-sensitivity C-reactive protein. CONCLUSIONS: Higher circulating levels of MCP-1 are associated with increased long-term risk of stroke. Our findings along with genetic and experimental evidence suggest that MCP-1-signaling might represent a therapeutic target to lower stroke risk.M. Georgakis is funded by scholarships from the German Academic Exchange Service (DAAD) and Onassis Foundation. The ARIC study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, under Contract nos. (HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700005I, HHSN268201700004I). The DHS study was funded by a grant from the Donald W. Reynolds Foundation. The EPIC-Norfolk study is funded by grants from the Medical Research Council UK (G9502233, G0401527) and Cancer Research UK (C864/A8257, C864/A2883). FHS is supported by the National Heart, Lung and Blood Instituteā€™s Framingham Heart Study (Contract No. N01-HC-25195 and No. HHSN268201500001I and 75N92019D00031), received funding by grants from the National Institute of Aging (R01s AG054076, AG049607, AG059421, U01-AG049505, AG058589 and AG052409) and the National Institute of Neurological Disorders and Stroke (R01 NS017950, UH2 NS100605), as well as grants for the MCP-1 measurements by NIH (1RO1 HL64753, R01 HL076784, 1 R01 AG028321). The KORA study was initiated and financed by the Helmholtz Zentrum MĆ¼nchen ā€“ German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-UniversitƤt, as part of LMUinnovativ. The MDCS-CV study has been supported with funding from the Swedish Research Council, Swedish Heart and Lung Foundations, and the Swedish Foundation for Strategic Research. This project has received funding from the European Unionā€™s Horizon 2020 research and innovation programme (No 666881), SVDs@target (to M. Dichgans) and No 667375, CoSTREAM (to M. Dichgans); the DFG as part of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy ā€“ ID 390857198) and the CRC 1123 (B3) (to M. Dichgans); the Corona Foundation (to M. Dichgans); the Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain)(to M. Dichgans); the e:Med program (e:AtheroSysMed) (to M. Dichgans) and the FP7/2007-2103 European Union project CVgenes@target (grant agreement number Health-F2-2013-601456) (to M. Dichgans)
    • ā€¦
    corecore