41 research outputs found

    Space-charge sheath with ions accelerated into the plasma

    Get PDF
    International audienceThe conventional model of near-cathode space-charge sheath with ions entering the sheath from the quasi-neutral plasma may be not applicable to discharges burning in cathode vapor, e.g., vacuum arcs, where ionization of emitted atoms may occur inside the sheath with some of the produced ions returning to the cathode and others moving into the plasma. In this connection, a simple model is considered of a sheath formed by electrons and positive ions injected into the sheath with a very low velocity and moving from the sheath into the plasma. It is shown that such sheath is possible provided that the sheath voltage is equal to or exceeds approximately 1.256kT e /e. This limitation is due to the space charge in the sheath and is in this sense analogous to the limitation of ion current in a vacuum diode expressed by the Child-Langmuir law. The ions leave a sheath and enter the plasma with a velocity equal to or exceeding approximately 1.585u B

    Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas

    Get PDF
    Management of nanosize powder particles via control of plasma parameters in a low-pressure SiH4 discharge for silicon microfabrication technologies is considered. The spatial profiles of electron and positive/negative ion number densities, electron temperature, and charge of the fine particles are obtained using a self-consistent fluid model of the electronegative plasmas in the parallel plate reactor geometry. The model accounts for variable powder size and number density, powder-charge distribution, local plasma nonuniformity, as well as UV photodetachment of electrons from the nanoparticles. The relations between the equilibrium discharge state and powder properties and the input power and neutral gas pressure are studied. Methods for controlling the electron temperature and SiH3- anion (here assumed to be the powder precursor) density, and hence the powder growth process, are proposed. It is shown that by controlling the neutral gas pressure, input power, and powder size and density, plasma density profiles with high levels of uniformity can be achieved. Management of powder charge distribution is also possible through control of the external parameters

    Electron transport phenomena in plasma devices with E/spl times/B drift

    No full text

    Micro-Cathode Arc Thruster (uCAT) Performance and Thrust Vector Control

    No full text

    L'épizootie asiatique de la grippe aviaire et la menace de pandémie humaine

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF
    corecore